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Preface

The Fourth International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2007) was held in Braga, on Saturday 31 March 2007, as a
satellite event of the 10th European Joint Conference on Theory and Prac-
tice of Software (ETAPS 2007). The first TERMGRAPH workshop took place
in Barcelona, in 2002, as a satellite event of the International Conference on
Graph Transformation (ICGT), the second TERMGRAPH workshop took place
in Rome 2004, also as a satellite event of ICGT, and the third in Vienna, as a
satellite event of ETAPS 2006.

The advantage of computing with graphs rather than terms is that com-
mon subexpressions can be shared, improving the efficiency of computations
in space and time. Sharing is ubiquitous in implementations of programming
languages: many functional, logic, object-oriented and concurrent calculi are
implemented using term graphs. Research in term and graph rewriting ranges
from theoretical questions to practical implementation issues. Different research
areas include: the modelling of first- and higher-order term rewriting by (acyclic
or cyclic) graph rewriting, the use of graphical frameworks such as interaction
nets and sharing graphs (optimal reduction), rewrite calculi for the semantics
and analysis of functional programs, graph reduction implementations of pro-
gramming languages, graphical calculi modelling concurrent and mobile com-
putations, object-oriented systems, graphs as a model of biological or chemical
abstract machines, and automated reasoning and symbolic computation systems
working on shared structures.

The aim of this workshop is to bring together researchers working in these
different domains and to foster their interaction, to provide a forum for present-
ing new ideas and work in progress, and to enable newcomers to learn about
current activities in term graph rewriting.

Topics of interest include all aspects of term graphs and sharing of com-
mon subexpressions in rewriting, programming, automated reasoning and sym-
bolic computation. This includes (but is not limited to): term rewriting, graph
transformation, programming languages, models of computation, graph-based
languages, semantics and implementation of programming languages, compiler
construction, pattern recognition, databases, bioinformatics, and system de-
scriptions.

For TERMGRAPH 2007, the Programme Committee selected 10 papers for
inclusion in these proceedings, covering a wide range of the topics.

The Programme Committee consisted of:

• Zena Ariola, University of Oregon, USA

• Andrea Corradini, University of Pisa, Italy

• Maribel Fernández, King’s College London, UK

• Bernhard Gramlich, Vienna University of Technology, Austria

• Annegret Habel, University of Oldenburg, Germany

iii



• Claude Kirchner, INRIA & LORIA, Nancy, France

• Jean-Jacques Lévy, INRIA, Rocquencourt, France

• Ian Mackie, King’s College London & École Polytechnique (Co-Chair)

• Aart Middeldorp, University of Innsbruck, Austria

• Ugo Montanari, University of Pisa, Italy

• Jorge Sousa Pinto, University of Minho, Braga, Portugal

• Detlef Plump, University of York, UK (Co-Chair)

• Arend Rensink, University of Twente, The Netherlands

We would like to thank all those who contributed to TERMGRAPH 2007.
We are grateful to the Programme Committee members for their careful and
efficient work in reviewing the submitted papers and selecting the workshop
programme.

Ian Mackie and Detlef Plump

1 March 2007
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TERMGRAPH 2007

Term-graph rewriting in Tom
using relative positions

Emilie Balland and Paul Brauner

UHP & LORIA, INPL & LORIA
Campus Scientifique, BP 239,

54506 Vandœuvre-lès-Nancy Cedex France

Abstract

In this paper, we present the implementation in Tom of a de Bruijn indices gen-
eralization allowing the representation of term-graphs over an algebraic signature.
By adding pattern matching and traversal controls to Java, Tom is a well-suited
environment for defining program transformations or analyses. As some analyses,
e.g. based on control flow, require graph-like structures, the use of this formalism
is a natural way of expressing them by graph rewriting.

Key words: term-graph,rewriting,strategic programming

1 Introduction

Program transformation and graph rewriting are strongly related [10]. Indeed,
although the structure of a program may be represented by a tree, informa-
tions about its execution like data dependencies or control flow are naturally
expressed by data-structures inherently using cycles or subterms sharing, in
other words by graphs. More precisely, since these graphs are oriented and la-
belled over an algebraic signature, such transformations are described within
the framework of term-graphs [13]. There exists several definitions of term
graph rewriting, category-theory oriented [7,11], equationally oriented [2] or
implementation-oriented [3].

Since 2001, the Protheo team has been developing the Tom system [12],
whose main originality is to be built on top of an existing language Java. Tom
provides pattern matching facilities to inspect objects and retrieve values.
Moreover, the rewriting steps can be controlled using a powerful strategy
language. The main application of the language being program transformation
and code analysis, we were interested in extending the Tom language for
supporting term-graph transformations.

In this paper, we introduce the notion of relative position inspired from the
de Bruijn indices as a way to express paths between two subterms. Then we

This paper is electronically published in
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Balland and Brauner

present an implementation of term-graphs based on this formalism. As Tom
provides rewriting strategies, integrating such structures in the language offers
strategic graph rewriting for free. After introducing the notion of relative
positions, we will explain how the language can be extended to offer facilities
for strategic graph rewriting. Finally, we will illustrate the use of this extension
by an implementation of lambda-calculus normalization.

2 Term-graph representation

Our goal is to represent term-graphs on top of the term rewriting theory
with the fewest possible modifications to this formalism to take advantage of
the existing results (confluence, termination) and tools, namely Tom. The
main idea of this paper is to raise the notion of position to the level of first-
order terms by extending algebraic signatures with an infinite set of constants
representing positions. This allows for the description of terms containing
some “pointers” to subterms of themselves. As an example, the term s(a, 1)
defined over such a signature denotes a term whose second child references the
first-one.

The main issue of this representation is that it is context-sensitive. For
instance, the position 1.1 references the subterm a in f(s(a, 1.1)), but s(a, 1.1)
in f(f(s(a, 1.1))). This raises the idea of relative positions describing paths
inside a term to the referenced subterms. The previous example would then
be written f(s(a,−1.1)), where −1 indicates one backward step inside the
term. This can be seen as a generalization of de Bruijn indices extended to
the count of all function symbols, not only abstractions.

In this section, we define more formally this notion of relative position
and terms with references before we present an implementation aimed to be
used by Tom. We finally discuss the relation between this formalism and
term-graphs as well as the associated technical solution.

2.1 Terms with references

As usual, a position is a finite sequence of natural numbers. The subterm u
of a term t at position ω is denoted t|ω, where ω describes the path from the
root of t to the root of u. To emphasize the difference with relative positions,
we will sometimes refer to positions as absolute positions.

Let us first define relative positions along with their meaning.

Definition 2.1 (Relative position) The set Rpos of relative positions is
the monoid (Z∗, .) with neutral element Λ where Z∗ = Z \ {0}.
We note n, p the elements of Z∗ and ωr, ω′

r, . . . the elements of Rpos.

Definition 2.2 (Referenced subterm) Given an absolute position ω and
a relative position ωr, the absolute position accessed by ωr from ω is written
pos(ω, ωr) and is defined as follows:

2



Balland and Brauner

• if ωr = Λ, then pos(ω, ωr) = ω

• else, there exists p ∈ Z∗ and ω′
r ∈ Rpos such that ωr = p.ω′

r and
· if p > 0, then pos(ω, ωr) = pos(ω.p, ω′

r)
· if p < 0 and if there exists ω′ and ω′′ such that ω = ω′.ω′′ and |ω′′| = −p,

then pos(ω, ωr) = pos(ω′, ω′
r)

It is undefined everywhere else.

We note t|ω,ωr the term t|pos(ω,ωr) for every ω and ωr such that pos(ω, ωr)
and t|pos(ω,ωr) are defined. We name it the subterm of t referenced by ωr from ω.

Intuitively, ωr describes a path back and forth inside t from ω to t|ω,ωr . For
example, the relative positions −1.1 and −2.1.2.−1.1 reference the same
subterm a of f(s(a, b)) from the position 1.2.

We can now define the notion of first-order terms with references. It only
consists in extending an algebraic signature with an infinite set of constants
denoting relative positions.

Definition 2.3 (Term with references) For every set of first-order terms
T (F ,X ), the corresponding set of terms with references Tref (F ,X ) is the set
T (F ∪Rpos,X ) where elements of Rpos have arity 0.

As an example, f(s(a,−1.1)) is a term with references of Tref ({f, s, a}, ∅).
By abuse of notation, we will say that “−1.1 references a in f(s(a,−1.1))”,
without specifying it occurs at position 1.2.

Problems will inevitably occur when considering undefined relative posi-
tions. We define therefore validity as follows.

Definition 2.4 (Term with references validity) A term with references
t ∈ Tref (F ,X ) is valid if for every leaf ωr = t|ω such that ωr ∈ Rpos, t|ω,ωr is
defined and is not in Rpos.

Notice that we forbid relative positions referencing relative positions.

2.2 Implementation of terms with references

Let us now see how this formalism can be transposed to the Tom language.
One characteristic of Tom is its data-structure independence. A term can be
represented by any Java object as long as the user provides a mapping to see
these objects as trees. For easier development, it comes up with a language
called Gom [14] which automatically generates from a signature the Java
implementation and the mapping. The resulting implementation is efficient
in space and time (constant time terms equality test) because of maximal
subterm sharing. Readers must pay attention to the difference between the
maximal sharing and the notion of sharing in term-graphs. In our case, the
maximal sharing is only at implementation level and does not lead to sharing
at the term level. A Gom signature contains sorts and their constructors.
For example, the signature below defines two sorts A and B along with their
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constructors.

A = a() B = g(A)
| f(A)
| s(A,A)

With this signature, we can construct the terms a(), f(a()) or g(f(a()))
for instance. Our goal is to generate an extended signature for terms with
references from an initial Gom one. To achieve this, for every sort T of a Gom
module, we generate a new constructor of rank posT(int*). The notation *
is the same as in [4, Section 2.1.6] and can be seen as a family of constructors
with arities in [0,∞[. The previous example is extended in this way:

A = a() B = g(A)
| f(A) | posB(int*)
| s(A,A)
| posA(int*)

As an example, we can now build the extended term s(−1.2.1, f(a)) with the
following syntax: s(posA(-1,2,1),f(a())). Then posA(-1,2,1) references
a() in the term s(posA(-1,2,1),f(a())).

This type of terms with references using explicit relative positions consti-
tutes a first extension of a Gom signature. In order to ensure type-preservation
and reference correctness, a second representation level consists in expressing
references with the help of labels. This notion of labelling can be seen as
an implementation of the addressed terms presented in [5]. We have added
new constructors to facilitate the use of labels and functions to transform a
term with labels into the low-level representation. For every sort T, we gen-
erate two constructors. The constructor labT(String,T) enables the user to
label a term with a string and refT(String) to reference a labelled term.
Thus the term s(refA("l"),f(labA("l",a()))) corresponds to the low-
level term s(posA(-1,2,1),f(a())). This notion of labels can be seen as
syntactic sugar for hiding positions to users in order to avoid bad manipula-
tions. Thereby, the constructors posT should be private so that users can only
construct terms with references by label usage. We provide functions which
generate the corresponding low-level terms after verifying that each refT cor-
responds to a labT of identical sort. This transformation is itself described
using strategic rewriting introduced in section 4.

2.3 Correspondence with term-graphs

Let us see now how a representation of cyclic term-graphs (in the sense of [2]
for instance) can be obtained from the terms with references introduced above.
For example, the term-graph rooted by s whose two children correspond to the
shared subterm a may be represented by s(a,−1.1). It may also be represented
by s(−1.2, a) though, so we need to define canonical forms. Moreover, we
noticed that several relative positions may reference the same subterm from a
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given position. Hence, we define canonical relative positions.

Definition 2.5 (Canonical relative position) Let ω1, ω2 be two abso-
lute positions, the canonical relative position cpos(ω1, ω2) from ω1 to
ω2 is the smallest relative position with respect to the length such that
pos(ω1, cpos(ω1, ω2)) = ω2.

Let us remark that cpos(ω1, ω2) = q.ω′ where ω′ ∈ (N∗, .) and q ∈ Z∗∪{Λ}.
We can now define the canonical form of terms with references using an order
on absolute positions.

Definition 2.6 (Canonical term with references) Let ω1 = n1.ω
′
1 or Λ

and ω2 = n2.ω
′
2 or Λ be two different absolute positions,

ω1 <Ω ω2 ⇔


ω1 = Λ

or n1 < n2

or n1 = n2 and ω′
1 <Ω ω′

2

A term t with references is then canonical if and only if t is valid and for every
leaf ωr = t|ω such that ωr ∈ Rpos, ωr is canonical and pos(ω, ωr) <Ω ω.

Typically, contrary to s(−1.2, a), the term s(a,−1.1) is a canonical represen-
tation of a term-graph.

The formalism presented all along this section has been implemented
through a plugin for Gom which generates an extended signature with new
constructors for positions and construction functions which offer different
levels of abstractions (from terms with explicit positions to term-graphs
with labels). As illustrated by the Figure 1, a user may provide a labelled
representation which is not a canonical form and use the provided con-
struction function to normalize it. Whatever the favored level of the user,

s

s s

f f

a a

s

s s

f

f

a

a

refArefA

labA

labA

”l1”

”l1””l2””l2”

Fig. 1. An example of term-graph and its representation as a labelled term.

the in-memory representation is always based on explicit relative positions.
Moreover, due to Gom design and in particular to the maximal sharing,
the efficiency in time and space is ensured. For example, the term-graph
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presented Figure 1 is automatically translated during the construction into
the low-level term with positions depicted in Figure 2. The principle of
maximal sharing is also illustrated by a schematic representation of the heap.

s

s s

f f

a a

posAposA

−2−1 1

s

s s

f

a
posA posA

-1 1
-2

Fig. 2. Generation of relative positions from the labelled representation and maxi-
mal subterm sharing in memory.

After defining terms with references rewriting, we will exhibit in the next
two sections how the Tom language offers strategic rewriting of these struc-
tures.

3 Term-graph matching

The originality of the previous approach is that pattern matching on terms
with references built upon T (F ,X ) is simply defined as pattern matching
on terms of Tref (F ,X ). There is therefore no need to extend the notion
of rewriting, which allows us to reuse existing results and rewriting tools.
However, the questions raised by this formalism are situated at another level:
we would like the rewrite system to rewrite only valid terms. Giving some
non-trivial criterion on rewrite rules implying this property remains an open
question for the moment. The next sections of this paper therefore focus on
technical aspects of the pattern matching problem implementation.

After introducing the Tom language, we discuss various presentations of
graph with references rewriting in this system. Although we cannot statically
check that patterns ensure the validity of matched terms, we also propose
several solutions to check this property at runtime.

3.1 Tom pattern matching

The first mechanism offered by the Tom language is pattern matching on al-
gebraic terms. This feature is similar to the constructs proposed by functional
languages like OCaml or Haskell. It is enabled by the %match keyword which
allows us to match a subject against some pattern and to get the values of the
pattern variables into Java ones:

A term = ‘s(f(a()),a());
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%match(term) {

s(x,y) -> {

System.out.println(

"First child: " + ‘x + ", second child: " + ‘y

);

return ‘f(x);

}

}

A subject is then any Java object which is an instance of a class whose
description has been provided to Tom via a mapping. This mapping indicates
to the Tom compiler how to match some class against a pattern, and how
to create new algebraic terms implemented by this class via the ‘ construct.
Here we are using the classes generated by Gom along with their mappings.
Tom also supports associative matching, a.k.a. list matching, as well as anti-
patterns [9] and non-linear matching.

Let us elaborate on the mapping mechanism. It provides an algebraic view
of some Java object (e.g. seeing integers as Peano natural numbers, or seeing
an XML tree as a term). It is divided into two parts: the destructive part and
the constructive one. The destructive part is used by the matching algorithm
and its main function is to describe how to query a term about its head symbol
and how to get its nth child. For instance, the mapping between integers and
Peano naturals would be similar to the following schematic code:

is_zero(n) { n == 0 }

is_successor(n) { n > 0 }

get_successor_child(n) { n - 1 }

On the other hand, the constructive part is used by the compiler to build an
algebraic term. It usually consists in calling the constructor of the Java class
implementing the term. Although our goal is to work as much as possible
on top of classes and mappings generated by Gom, we will punctually adapt
some mapping to our needs.

3.2 Matching terms with references

Given these language constructs and the terms described in Section 2.2, there
are many ways to express matching against patterns with references. As
for term construction, patterns can be expressed at low-level using directly
positions or by a syntax based on labelling. In each case, it refers to a
stated subterm whose position is well-known. To compare two references by
value instead of references, we will introduce a deref operator in patterns
implemented using Tom mappings.

The simplest way to handle Gom terms with references is to consider the
extended signature and perform some standard pattern-matching on it. Since
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the posT(int*) constructors generate matchable terms, it is possible to write
patterns where relative positions are explicitly given. As an example, the
term represented Figure 3 matches against the pattern s(a(),pos(-1,1)).
Notice that this type of pattern denotes exactly the structure of the term: e.g.
s(pos(-1,2),a()) would not match the same term. This method allows us
to match against any position, even those pointing to an upper term as shown
Figure 4. This may still be relevant in case of a procedure carrying some

s

a

Fig. 3. s(a(),pos(-1,1))

f

Fig. 4. f(pos(-n,...))

contextual information or fetching the position to perform some computation
later. It may also be useful to compare two positions without knowing the
value of the subterms they are referencing. Figure 5 illustrates this situation.
Notice however that this is only possible if the two variables have the same
height in the term, as we are comparing relative positions.

s

Fig. 5. s(x,x)

f

Fig. 6. f(pos(-n,...))

This first simple manner of matching graphs with references presents two
issues: the main one, depicted by Figure 6, is that a relative position may be
undefined. These patterns should therefore be considered as a kind of unsafe
assembly language for matching terms with references. The second one is
that the explicit notation of positions is not mandatory and may be easily
avoided with some syntactic sugar.

Thereby we propose to slightly modify the Tom compiler to address them.
The first change consists in integrating labels capturing and denoting positions
of subterms into the patterns syntax in order to avoid any explicit position
matching. As an example, the term represented in Figure 3 would match
against the pattern s(x:a(),x). The translation of this kind of patterns to
the former one is trivial: each occurrence of a label lab is replaced by the
relative position from its position to the position of the subterm labelled by
lab.

8



Balland and Brauner

The second modification aims at reinforcing the patterns safety. As
explained in section 2.2, we do not want the user to be able to recover
a position by matching the term of figure 3 against s(_,x) for instance.
This can be achieved by inhibiting the generation of mappings for position
constructors, so that the matching algorithm fails on such patterns. Another
less restrictive way of dealing with the undefined relative positions problem
would be to have the patterns similar to s(_,x) match only valid terms.
This could be achieved by checking at runtime that every relative position in
x references an accessible term. This is easily done with the help of strategies
presented in section 4. In both cases, we cannot avoid some modifications of
the pattern-matching algorithm, thus of the compiler.

The two previous kinds of patterns focus on the positions themselves as
matchable objects. Another approach would be to have the patterns express
constraints about the value of the referenced subterms. The mapping mecha-
nism presented in Section 3.1 offers the necessary features to achieve this via
the writing of an ad hoc destructor. We wrote this deref destructor which
acts like a proxy between the pattern matching algorithm and the destructor
of the value referenced by a position. As an example, the term represented by

s

sa

f

s

sa

a

f

Fig. 7. deref(a()) ambiguity

Figure 3 matches against the pattern s(a(),deref(a())). It is important
to note that the patterns are now an abstraction of the term so we do not
match the graph structure anymore. For instance, the two terms of Figure 7
match against the same pattern s(a,s(f(deref(a())),_)). In particular, it
is not possible anymore to use non-linear pattern matching in order to check
that two positions are referencing the same sub-term, as depicted by Figure 8
which shows the ambiguity of the s(s(deref(x),deref(x)),_) pattern.
Again, matching terms with references in this way is not safe. Indeed the
subject may contain positions referencing terms above its root. However
this time, checking the validity of a term does not require any change to the
compiler since the test can be transfered to the destructor. The latter aborts
the matching process by returning false if accessing the pointed term raises
an exception.
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s

s

s

ss

Fig. 8. deref(x),deref(x) ambiguity

3.3 Matching term-graphs

Contrary to Gom terms with references, the usual term-graph definition does
not differentiate two types of children. Therefore, it may be convenient to have
the patterns s(x:a(),x) and s(x,x:a()) match either s(a(),pos(-1,1)) or
s(pos(-1,2),a()). The normal form mentioned in Section 2.2 enables such
a feature: it is sufficient to maintain normalization of both terms at runtime
and patterns at compile time to ensure this behavior. It requires some minor
changes of the Tom compiler though.

As recalled in Section 2.2, one main application of term-graphs is the
representation of subterms sharing in the purpose of gaining space and com-
putation time. However, this structure (the sharing) does not reflect the
structure of the represented term (typically a λ-term) and it is therefore de-
sirable to manipulate it modulo this encoding. The basic idea is to interweave
deref constructors inside the patterns, so that s(a(),a()) is translated into
deref(s(deref(a()),deref(a()))) and thus matches the graph of figure 3.
It only requires to confer some lazy behavior to the deref destructor, which
should act as if not existing in case of a direct subterm (not a position).

Even if the classical [3] representation of term-graphs by a labelled graph
is similar to ours, the conditions on rewrite rules are more restrictive (the left-
hand side of a rule is limited to trees). For now, term-graph rewriting in Tom
is expressed by syntactic term rewriting. Contrary to [3], there is no garbage
collection phase and referenced subterms can disappear or change, leading to
invalid terms. One solution would be to integrate this garbage collection phase
in the Tom matching. An other attractive approach would be to implement
the formalism presented in [6] where the right-hand side of the rewriting rules
consists in a set of actions on the pointers.

4 Strategic programming with term-graphs

Tom provides a powerful strategy language inspired by ELAN and Stratego.
The purpose of strategies is to describe how transformation rules should be
applied. In case of terms with references, the strategy language must be
extended in such a way that we can traverse them as graphs.

10
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4.1 Tom strategy language

Elementary strategies are composed of the two basic strategies Identity()

and Fail() as well as type-preserving user-defined rewrite rules specializing
their behaviour:

%strategy Eval() extends Fail() {

visit A {

s(x,a()) -> { return ‘f(x); }

s(x,y) -> { return ‘y; }

}

}

When applied to a node of sort A, a transformation is performed if one of the
patterns matches the node. Otherwise, the default Fail strategy is applied.

More complex strategies can be built on top of elementary ones, in-
volving basic combinators introduced in ELAN [8] and extended in [15]:
Sequence(s1,s2), Choice(s1,s2), All(s), One(s), etc. We can therefore
build strategies such as ‘Choice(Eval(),Identity()) which tries to apply
Eval() to the current node and returns it unchanged if Eval() failed (i.e.
none of the patterns matched the current node).

Besides, the strategy language allows the declaration of recur-
sive parametrized strategies, enabling the definition of higher-level con-
structs. For example, the fix-point operator can be expressed by
Repeat(s)

4= µx.Choice(Sequence(s,x), Identity()), where µ denotes a
recursion operator, x a variable, and s a parameter of the strategy. In Tom,
we raised the recursion operator to the object level, allowing the definition of
complex strategies in a truly algebraic manner:

Strategy Repeat(Strategy v) {

return ‘mu(MuVar("x"),

Choice(Sequence(v,MuVar("x")),Identity()));

}

Finally, Gom generates a congruence strategy _f for each constructor f

of an algebraic signature. Using the notation s[t] to express the application
of the strategy s to the term t, f(s1,...,sn)[f(c1,...,cn)] returns
f(s1[c1],...,sn[cn]) and fails if the head symbol of the subject is not
f. This allows to perform pattern matching “on the fly” during term traversal.

One noticeable property of strategic programming with Tom is that it is
possible to get the current absolute position inside the visited term during a
traversal. This allows for instance to collect in one pass the set of reduced
forms of a term for a given rewrite system. In our case, we will make use of
this feature in the next section to collect the positions of bounded variables
occurences under an abstraction.
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4.2 Extension of Tom strategy language

In order to traverse terms with references, we enrich the strategy language
of Tom with one new strategy combinator Ref whose semantics is defined as
follows:

Ref(s)[t] =

 s[t’] if t’ is the term referenced by t

s[t] otherwise

This new basic combinator can be used everywhere in a composed strategy.
One important characteristic of the Tom strategy language is that every com-
posed strategy is itself a term and therefore can be traversed and rewritten.
Adapting a strategy term for graphs with references consists in weaving the
Ref combinator ahead every elementary strategy inside a strategy term. For
example, Sequence(s1,s2) where s1 and s2 are elementary strategies will be
rewritten into Sequence(Ref(s1),Ref(s2)).

5 Application to the lambda-calculus

Let us see now some application of our programming framework through the
implementation of a basic λ-calculus interpreter. The graph with references
will encode variable bindings, acting as de Bruijn indices, while the strategy
language will translate the usual evaluation strategies of λ-calculus.

We work with a minimalist Gom signature:

LT = App(LT, LT)
| Abs(LT)

The chosen representation of λ-terms makes use of terms with references
by replacing variables with positions pointing to the corresponding binder.
For instance, the term λf.λx.(f x) will be encoded by the Gom term
Abs(Abs(App(posLT(-3),posLT(-2)))). This encodes a kind of de Bruijn
indices counting not only abstractions but also every node in the syntactic
tree of the λ-term.

Let us write a beta strategy wich performs one β-reduction step on a redex.
As mentioned in the previous section, it is possible to get the current position
inside a visited term during its traversal by a strategy. Thereby, knowing the
position of λ inside the visited redex (λx.f a) will allow us to find all the
occurences of x in f , i.e. relative positions pointing to λ. The beta strategy
then simply consists in four steps when applied to an application (λx.f a):

(i) collecting the position of λ;

(ii) collecting a;

(iii) replacing all the occurences of relative positions pointing to λ by a in f ;

12
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(iv) replacing the redex by the modified f .

Assuming we have a mutable structure info (a Java class here) which can
store both informations of the first and second steps, this is achieved by the
following strategy:

Strategy beta = ‘Sequence(

_App(Identity(),collectTerm(info)),

_App(

Sequence(

collectPosition(info),

_Abs(µx.Choice(substitute(info),All(x)))),
Identity()),

clean());

We can notice the presence of four user defined strategies: collectTerm,
collectPosition, substitute and clean. They respectively perform the
four steps described above. Their code is obvious and one line long, except
for the substitute strategy which has to compute the absolute position
referenced by the current term to compare it with the position of λ stored in
info. Then it performs the necessary shifts on bounded variables (relative
positions) inside a before returning it. The whole strategy itself is an overlap-
ping of congruence strategies. The µx.Choice(substitute(info),All(x))
construct means that we do not go down further inside the term if the
substitution succeeded.

We shall now apply this beta strategy on a λ-term with some evaluation
strategy until we reach a fixpoint. beta being a strategy, it can be combined
with other strategies to perform reductions. In particular, the TopDown and
Innermost strategies respectively encode call-by-name and call-by-value eval-
uation strategies modulo some fixpoint computation encoded by the provided
RepeatId strategy. They are themselve expressed using elementary strategies:

TopDown(s) = µx.Sequence(s,All(x));
Innermost(s) = µx.Sequence(AllRL(MuVar(x)),Try(Sequence(s,x)))

Where AllRL applies s to all the childs of the current node from right to
left. Substituting s by beta inside one these enables the expected evaluation
behaviour.

Let us briefly see how a typical use of term-graphs, namely sub-
terms shared evaluation, can be implemented by a slight modification
of the previous example. We now assume that many bounded vari-
ables are represented by shared subterms where “shared” is meant in
the sense of term-graphs semantics. For example, the λ-term λx.(x x)
will be represented by Abs(App(posLT(-2),posLT(-1,1))) instead of
Abs(App(posLT(-2),posLT(-2))). The previous beta strategy is then

13
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still mainly valid since this modification only affect the situations where
the second child of an application is a variable, i.e. a relative position.
Hence, changing the line _App(Identity(),collectTerm(info)) by
_App(Identity(),Ref(collectTerm(info))) suffices to adapt the strategy
to the new λ-terms representation. This modification is of course relevant in
case of a call-by-name strategy.

Finally we shall notice that termgraphs are sometime used to represent
cyclic λ-terms [1]. This raises the question of the representation of terms
cycling on an abstraction like 〈x | x = λy.(x y)〉 with our de Bruijn encoding.
Indeed, both y and x variables are then references denoting the root of the
λ-term. This is easily handled by the use of “colored” references, implemented
by two different posLT constructors: Abs(App(PosLT1(-2),PosLT2(-2))).

The discussed implementation is available in the Tom subversion
repository 1 , under the examples/termgraph path.

6 Conclusion

To the best of our knowledge, we have presented here a new way of representing
terms with references which presents strong similarities with the term-graph
formalism. Using the Tom language as a programming background, we have
discussed the various advantages and drawbacks of such an approach at differ-
ent levels: memory representation, pattern matching and strategic traversal.
We finally presented an application of this framework via the writing of a
simple λ-calculus interpreter making an heavy use of strategies.

A major part of the presented propositions has been implemented. We
are now working on the definition of a rewriting step similar to the one of [2].
Another field of investigation would be the writing of Ref strategies aborting
infinite loops appearing during the traversal of a graph with cycles. This could
be achieved by some map associating counters to visited nodes.

As shown by the last section, this model has interesting applications and
opens promising perspectives in terms of program transformation and code
analysis. Besides, the normal form described in section 2.2 makes it a solid
basis for experimenting transformations on term-graphs in a concise and ex-
pressive manner.
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Behet and Lippihard interation system into hard ombinators has a quite di�erent harater fromthe orresponding translation for interation nets where the key tehnial point isimplementing the dupliation of some nets. 4 Here we shall represent nodes as bi-nary words and alulate the transformations with boolean funtions. The namehard interation nets is well-hosen, sine they are a form of abstrat hardware. Inthis perspetive, it is interesting to sum up the important rules and give the basiomponents that an be used to onstrut asynhronous iruits. For example, itshould be possible to build an asynhronous omputer simply by following lassialVon Neumann omputer arhiteture and using hard ombinators [1℄.Notation. The domain of some variables is impliitly given by their names withthe following onventions: x; y; z; x0; x1; x2; ::: are binary digits, p; q; r; s; t are binarywords and �; � and � are signatures (+ or �). Conatenation of p and q is noted pqso xy is a word with two digits and the salar produt of x and y is expliitly notedx � y. xn denotes the word x:::x with n letters. jpj is the length of p. The set ofboolean values f0; 1g is noted B and the set of natural numbers N.2 Hard interation netsWe present hard interation nets informally from srath without any referene tolinear logi or even to interation nets. A hard interation system (or hard systemfor short) is omposed with a set of symbols and their orresponding arity and witha set of interation rules.2.1 Cells, Ports, Nets and CutsOurrene of symbols are alled ells and have n + 1 ports where n is the orre-sponding arity. Eah ell has exatly one prinipal port (pitured with a blob) andn auxiliary ones:
01 n. . .�Nets are build with a set of ells and free ports where ports (prinipal, auxiliaryand free ones) are onneted pairwise. Cuts are partiular nets omposed of twoells onneted by their prinipal ports.2.2 Interation rulesThe di�erene between the prinipal port and the auxiliary ones is essential sinerewriting (or interation) an be applied only on uts. In other words, the leftmember of an interation rule is omposed of two ells onneted by their prinipalports. Interation onsists in relabeling ells and hanging the orientation of the4 more preisely prinipal nets for the onnoisseur.17



Behet and Lippiprinipal ports; we shall say that the ell is turning. To sum up, an interation ruleis pitured as follows, .
. . . . . . | {z }`

kz }| {. . . . . .
. . . . . .

. . . . .�� �0� 0and we say that if an �-ell interats with a �-ell it beomes �0 and turns k timesounter lokwise. Similarly, �-ell beomes �0 and turns ` times. Note we areinterested only in deterministi hard interation systems so there is at most oneinteration rule for eah pair of symbols.2.3 RedutionStarting from an initial net ontaining uts, we an apply an interation rule ob-taining another net and so on until an irreduible net if the redution �nishes. Hardinteration systems are very simple sine the omputation is loal (only two ells areinvolved in a redution) and the geometry of the net is invariant. However one anshow [4℄ that it is omplete from a omputational point of view i.e one an de�nea hard interation system that simulate a Turing Mahine. Let us �nish with anessential property due to the loal synhronization.Proposition 2.1 (strong on�uene) If a net � redues in one step to � and � 0,with � 6= � 0, then � and � 0 redue in one step to a ommon net �.� � 0� �Proof The left member of an interation rule is a ut and � 6= � 0. Consequentlythe above redutions are applied on two di�erent instanes of uts. Two instanesof uts are neessarily disjoint (a ell is in one ut at most) so the orrespondinginteration rules an be applied independently. 2Consequently redution is deterministi in a strong way: any redution strategygives the same result with the same number of steps.Corollary 2.2 (redution) If a net � redues to an irreduible net � in n steps,then any redution starting from � eventually reahes � in n steps.18



Behet and Lippi3 A universal system: hard ombinatorsWe present a partiular hard system alled hard ombinators with four symbols andseven rules that is su�ient to simulate all other hard systems. More preisely, wean translate eah ell � by a net [�℄ built with hard ombinators suh that,
). . . . . .

. . . . . .
. . . . . .
. . . . . . . . . . . .

. . . . . .

. . . . . .
. . . . . .[�℄ [�0℄� 0�0� [� 0℄� [�℄

3.1 CellsOur system is omposed of four di�erent symbols: two binary ones, 0 and 1, andtwo unary ones, + and �. x �
3.2 RulesThere are seven rules that an be split into two groups: three rules between binaryells and four rules between unary and binary ells. There is no rules between unaryells. Binary rules are also alled uniform rules beause the prinipal port �turnsin the same diretion� (ounter lokwise) for eah interation. The three uniformrules an be summed up by the following shema where + denotes sum modulo 2.xy x+yx+yConsequently, the four other rules are alled non-uniform rules beause the ori-entation of a binary ell depends on the unary ell interating with it. Intuitively,(+)-ells let binary ells turn ounter lokwise and (�)-ells fore them to turnlokwise. 19
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�
�
0 0 0 0
1 1 1 1�+ +

� +
+De�nition 3.1 [loks℄ for any bit x, =yx xCloks are introdued for graphial onveniene to avoid ompliated rossing ofwires. They are noted yx beause they interat as binary ells exept their prinipalport turns lokwise. For example, we have the following redutions.yx yx+yyx yx+yx+y yyy yx+y

4 Uniform omponentsIn this setion, we onsider the subsystem omposed only with the two binary ellsand the orresponding three uniform rules. Surprisingly, non trivial funtions anbe built in this restrition and, indeed it is a deisive step in the onstrution of auniversal translation.De�nition 4.1 [binary pipes℄ for any bit x, x = x xLemma 4.2 for any bits x and y, �x y y xProof We apply uniform rules and the equality x+ x+ y = y mod 2
2xxyyxy x+yx+yxy yxxx

yy ==
20



Behet and Lippi 2De�nition 4.3 [pipes℄ for any word p = x1::: xn, .p = . . x1xnNotation. We also piture an unknown pipe nz }| { for pipes orresponding to anyword of size n or simply if there is no ambiguity. Those blank representationsome from the idea that if one does not know what is stored in a pipe then, theplae is free !Lemma 4.4 for any words p and q, qp q p�Proof by indution on p and q. 2De�nition 4.5 [zero℄ =0 0000Lemma 4.6 for any bit x, 0 0�x xProof The above redution an be easily heked with the binary rules. 2De�nition 4.7 [seesaws℄ for any bit x, = 0xxAs loks, seesaws are introdued to simplify the de�nitions of the other nets anddo not have any funtional property. Seesaws interat as binary ells: they hangetheir prinipal port and their symbol is summed with the interating ell.Remark 4.8 Do not onfuse between pipes (binary words in a square box), seesaws(bits in a round box) and unary ells (signatures in a round box).
De�nition 4.9 [diodes℄ = 0y xx

0 y
Remark 4.10 Unlike pipes or zero, diodes orrespond to a set of nets not to aunique one. Indeed, bits x and y in the above de�nition an have any binary values sothere are four di�erent representation of a diode. We shall use this kind of de�nitionfor other omponents. 21



Behet and Lippi
Lemma 4.11 For any bits x and y, �xy x+yxProof The above redution an be easily heked with the uniform rules. 2Remark 4.12 Aording to remark 4.10, the above lemma should be read �startingfrom any representation of the diode in the left member, we obtain another (possiblydi�erent) representation of the diode in the right member.5 Invariant netsDe�nition 5.1 [Invariant nets℄ Let us onsider a net � where free ports are par-titioned into three sets: inputs, pitured with an in-going arrow, outputs, pituredwith an out-going arrow, and unused, pitured with no arrow. We say that � is in-variant on inputs p1; :::; pk and produes outputs q1; :::; q` when we have the followingredution, �p1 . . . pk. . . ...q1 q`�. . .... ...�
where the length of the �input� pipes are respetively jp1j, ..., jpkj and the lengthof the �output� ones jq1j, ..., jq`j. We shall use the following notation for invariantnets, .q1 q`. . .... �p1 pk. .
Remark 5.2 We do not mention where are the prinipal ports of �. Indeed, theimportant point is to identify the inputs and the outputs and to know how theyinterat with pipes.As explained in remark 4.10, the net � orresponds to a lass of nets and theredution above means that the right member is in the same lass of nets as the leftmember. For example, in de�nition 5.6 , x0 and y0 range over f0; 1g and � rangesover f+;�g so there are eight di�erent representations.Remark 5.3 Aording to the previous de�nition, an invariant net is a pair om-posed of a net and a partition of its free ports and there may be several invariant22



Behet and Lippinets orresponding to a unique net. However, we also say that a net is invariantwhen suh a partition exists.Remark 5.4 In the previous setion we introdued unknown pipes and zero whihare invariant. More preisely, p p and 00 .5.1 Dupliator and arithmeti operationsTo avoid umbersome repetitions, we give the de�nition and the orresponding in-variane property of the following nets in one shot. For example, the net Æ is de�nedby the right member of the equality and we show that it is invariant on input p andprodues output p twie.De�nition-Lemma 5.1 (dupliator) =pp pÆ xxProof We apply lemma 4.11 for the diode and the uniform rules. 2De�nition-Lemma 5.2 (plus) + =yx+ y x1x x1
Remark 5.5 + denotes the sum modulo 2.Proof We apply lemma 4.11 for the diode and the uniform rules. 2In the uniform subsystem, we have de�ned onstants, pipes, dupliation andplus. So one may wonder if it is possible to de�ne produt as well in this subsystem.The answer is probably negative. Indeed, the plus operation (binary xor) is weakerthan binary addition that is omputing the sum and but also the arry. Moreover,one an prove that is impossible to build a uniform system that is universal.
De�nition 5.6 [sequential produt℄ x� y =�x y x0x0 � y0y0

The sequential produt use input y �rst. If y is zero the result is diretly returnedand input x is not used. 23



Behet and Lippi
De�nition 5.7 [partial quotient℄ x=yyx =� y0x0yx0 � y0

The partial quotient an be onsidered as the dual of the sequential produt.Both inputs are used but it returns no result when input y is zero.Lemma 5.8 We have the following invariants for sequential produt and partialquotient,
0� 0 , x� 1x , x 0� and 1xx �Proof Trivial with uniform but also non-uniform rules. 25.2 CompositionThe �rst steps, building invariant nets from srath an be ompared to bootstrap inthe sense that the di�ult part is only to build the very �rst omponents (onstantzero, dupliator, produt). It is now easy to ompose invariant nets with pipes andbuild other more ompliated nets.However, for synhronizations reasons, it is not always possible to ompose twoinvariant nets by plugging diretly outputs of the �rst one with inputs of the seondone. To avoid this problem, outputs of invariant nets are onneted to unknownpipes. It is not di�ult to verify that suh �bu�ered� invariant nets an be freelyomposed. In some ases, we an suppress those �output pipes� but the proof of theinvariane property is tedious. Consequently, from now on, all outputs of invariantnets are onneted to pipes when they are omposed with other invariant nets.A �rst appliation is to implement binary word onstants.De�nition-Lemma 5.3 (onstant)

p = Æp p
Remark 5.9 For larity, onstants are de�ned with non-redued nets. We an verifythat we an redue them and by the on�uene property, we an use the redued form.Let us give an invariant net for boolean and.24



Behet and LippiDe�nition-Lemma 5.4 (boolean and)^ = ��x y Æx ^ yProof We onsider two ases: y = 0 and y = 1 and apply omposition. 2Remark 5.10 x^y = x�y so the di�erene between sequential produt and booleanand is that boolean and always uses its two inputs.In the same way, we an de�ne invariant nets with several inputs and outputs forvetorial boolean funtions on several inputs. Eventually, those invariant nets an beused to build the orresponding funtions on binary words. To that purpose, the netsspit and merge an be omposed to build some kind of parallel/serial adaptators.De�nition-Lemma 5.5 (split and merge)
=split � �yxy Æx 10 01
=merge +� �10 01yxyx

Proof By omposition. 26 The TranslationNow we are ready to translate a given hard interation system into the system ofhard ombinators presented in setion 3. Symbols are numbered and represented bybinary words of a �xed length N . A �rst idea is to represent the set of rules that wewant to enode by a partial funtion ' : BN� BN ! BN � N where '(p; q) = (p0; k)if p interats with q, beomes p0 and turns k times. Let us remark that we need thevalues of '(p; q) and '(q; p) to ompute the redution between p and q.In fat, we hoose a slightly di�erent representation and introdue stable ellsthat interat with another (stable) ell and unstable ells that interat internally25



Behet and Lippireahing eventually a stable state. Eah interation is deomposed into one exter-nal interation between two stable ells followed by several (possibly zero) internalinterations inside eah unstable ell. This way we an impose that a ell turns (uni-formly !) exatly one at eah (external or internal) interation. Consequently, theset of rules is represented by a partial funtion  : BN�BN ! BN where  (p; q) = p0if p interats with q, beomes p0 and turns exatly one.Let us de�ne  from '. For eah ouple of (stable) symbols p and q suh that'(p; q) = (p0; k + 1) 5 we introdue k new (unstable) symbols p1; :::; pk and set,8>>>>>>>>>><>>>>>>>>>>:
 (p; q) = p1 (p1; 0N ) = p2... (pk�1; 0N ) = pk (pk; 0N ) = p0Sine unstable ells do not interat with another one, we arbitrarily �x the valueof the seond argument of  to 0N . Here is the graphial representation of aninteration between p and q where '(p; q) = (p0; k + 1) and '(q; p) = (q0; `+ 1),.... . ..... . ..... . ..... . ..... . ..... ...... . ..... . .1 externalinteration k internalinterations interations` internalk + 1

`+ 1 p q0p0 p0q1q p1q1Let us introdue two invariant nets. The �rst one orresponds to the funtion that omputes the new symbol after an (internal or external) interation. Theseond one alled disriminant �, says if a ell is stable or not.De�nition 6.1 [transition and disriminant℄
 (p; q) p q if p is stable�pp otherwise0N1NNow we an give the translation of the port of a ell into two parts: �in and �out.The important idea is that �in omputes the next symbol p0 without any interationwith q in the ase p is not stable. In the same way �out gives the urrent symbol ponly if p is stable.5 If the prinipal port remains unhanged after redution, we say that it turns a + 1 times where a is thearity of the ell. 26



Behet and LippiDe�nition 6.2
��=�outpp q =p0p  �in � �

Lemma 6.3
 (p; q)

�outp
�inp q (p; 0N)�outpp

if p is unstable
if p is stable

and
and

�inp
Invariant nets are easy to use and ompose beause we feel �at home� withinputs/outputs. However this notion is not mandatory for general interation nets.Indeed, in the translation of a port, we need some kind of �full/duplex� onnetionsine a ell outputs its urrent symbol to another ell but also inputs the symbol ofthe ell with whom it is interating ! This is exatly what is done by the net .De�nition 6.4 [gamma℄ xxÆ=pqi yyPort p orresponds to an input, port q to an output and i to the �full/duplex�interfae. Eah port of a ell orresponds to a -ell; when two ells interat, theinput of a -ell is reprodued on the output of the other -ell. This property issummed up in the following lemma. 27



Behet and LippiLemma 6.5 pq qpRemark 6.6 Let us remark that surprisingly  is built only with uniform ells.Now we an ompose, �in, �out and  and give the translation of a port �.Aording to the previous paragraph, port i (interfae) is both an input and anoutput.De�nition 6.7
=�i pp0 �out�in

Æ
Lemma 6.8 (external and internal interation)

if p is unstablep� (p; 0N)
if p is stable� (q; p)qp� (p; q)

Proof By omposition. 2The above lemma details two ases: two stable ells interat with one anotheror an unstable ell interat internally. Consequently, port i is unused or plugged tothe interfae of another � net. 28



Behet and LippiDe�nition 6.9 [translation of a ell℄� �p �.=. .. ..pwhere the length of the pipes is jpj = NBy analogy with omputer arhitetures, � orresponds to a form of Arithmetiand Logial Unit (ALU) and pipe to a register. Then this basi arhiteture (a net� omposed with a pipe) is repeated for the translation of eah port of the ell.Another possibility is to �entralize� the transition funtion for the whole ell. Theadvantage is we do not have to introdue unstable ells but on the other side wehave to implement a more ompliated omponent for the interfae part.Finally, it is now easy to verify that our translation simulates the rules of a givenhard system.Theorem 6.10
). . . . . .
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. . . .. .. . . . . .
. . . . . p0p pqq � q0p0q0Proof Apply lemma 6.8 and de�nition 6.9. See appendix A for the detailed redu-tion. 27 ConlusionThe system we propose seems to be a good andidate for a universal hard system.However this work is a �rst step in the domain of hard interation nets. Indeedmany questions related to fundaments as well as appliations remain still open.� The �rst one onerns the minimality of suh a system; is it possible to give asimpler universal system with fewer symbols or rules? For instane, it is not easyto know whether three symbols would be su�ient. We only know that a systemomposed only of uniform rules annot be universal.� There is a orretness riterion for interation nets imported from linear logi toprevent deadloks. It is important to reformulate this riterion for the partiularase of hard interation nets sine it is an opportunity to simplify and perhaps tore�ne it.� Although (general) interation nets annot be translated into hard interationnets, it is interesting to see if there ould be a ompilation proess for some29



Behet and Lippisublass of interation nets. Interation nets would be the high level program-ming language whereas hard interation nets would be the target (low level) lan-guage. In the same spirit, interpreters have been developed for interation nets.Would it be possible to physially implement omponents for hard ombinators?In other words, we an onsider hard ombinators as omponents for eletroniasynhronous iruits?� As interation nets an be ompared to graph rewriting systems, hard interationnets an be ompared to graph relabeling. These tehniques have been partiularlysuessful in the study of graph eletion algorithms [2℄. It would be interesting toimplement suh algorithms with hard interation nets and this way take bene�tfrom the on�uene property! More generally, it would be interesting to omparehard interation nets with other existing rewriting tehniques.� The �xed geometry of hard interation nets gives them a very similar �avour toellular automata, or a generalization of ellular automata to non-retangular gridsand there are universality results for ellular automata so it should be interestingto ompare those rewriting systems.
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Behet and LippiA Simulation of hard interation rulesWe detail the proof of theorem 6.10. We onsider the interation between a ell pand q where p beomes p0 and turns k + 1 times and q beomes q0 and turns `+ 1times. �
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B�ehet & LippiHard interation systems are, in fat, a variant of interation systems where rulesare onstrained in suh a way that the struture of nets an not hange. Rules donot reate or destroy ells or links between ells. They an only hange the symbolof agents and the port that is prinipal.In [8℄, Lafont introdues a universal interation system with only three di�erentsymbols , Æ and �. Æ and � are respetively a dupliator and an eraser and  is aonstrutor. This system preserves the omplexity of omputation for a partiularsystem. The number of steps that are neessary to redue a simulated interationnet is just (at most) the number of steps of the original interation net multipliedby a onstant (whih depends only on the simulated system and not on the size ofthe original interation net). [1℄ shows that there exists a universal system withonly two symbols.However, both systems an not be onsidered as universal hard interation sys-tems beause the rules that de�ne the systems do not preserve the struture ofnets. The paper investigates this problem and shows how we an simulate everyhard interation system by a universal boolean interation system. In fat, booleaninteration systems are hard interation systems where information that are ex-hange between agents are binary like hardware iruits onneted by a wire anonly ommuniate binary information.We thing that this result is interesting if we want to implement (eventually withhardware iruits) suh system using a �nite set of ombinators. This result alsoshows the main priniples behind hard interation system: dupliation (the systemis linear), omputing (something must be done) and onditionnal input/outputinteration (the ells must hoose to whom they want to interat to).This paper is organized as follows: after an introdution to interation nets andhard and boolean interation systems, the notions of interation net homomorphism,simulations and universal hard interation systems are presented. Setion 4 showshow to translate a system to a universal system.2 Hard interation systemInteration nets are a model of omputing introdued by Yves Lafont in [6℄. Webriey presents interation nets and hard interation systems are. Boolean intera-tion systems are presented in the Setion 4.2.1 Agents and netsAn interation net is a set of agents linked together through their ports. An in-dividual agent is an instane of a partiular symbol whih is haraterized by itsname � and its arity n � 0. The arity de�nes the number of auxiliary ports assoi-ated to eah agent. In addition to auxiliary ports, an agent owns a prinipal port.Graphially, an agent is represented by a irle :34



B�ehet & Lippi� n01
In fat, the ports form a irular list that are represented on the irle. Theprinipal port is marked by a triangle and the name is put inside the irle. The(dynami) state of an agent is only determined by its name and the position of theport that is prinipal.An interation net is a set of agents where the ports are onneted two by two.The ports that are not onneted to another one are the free ports of the net andare distinguished by a name. The set of names of the free ports of a net is theinterfae of this net. Below, the interfae is fy; xg. � has one auxiliary port, � hastwo and � has none. � �� ���

y

x2.2 Hard interation rule and hard interation systemAn interation net an evolve when two agents are onneted through their prinipalports. An interation rule is a rewriting rule where the left member is onstitutedof only two agents onneted through their prinipal ports and the right member isany interation net with the same interfae. For hard interation system, the rulemust preserve the struture of nets. Thus the right member of a hard interationrule is also onstituted of two agents with the same arities as the agents of the leftmember of the rule and they must be onneted by a link that orresponds to thesame ports as for the left member. In fat, the right member of a rule is the same asits left member exept that names may be di�erent and the ports that are prinipalmay be di�erent (at least one prinipal port must be di�erent).The right member of a hard interation rule an be haraterized for eah inter-ating agent by the new name of the agent and by a rotational number from 0 to n(n is the arity of the agent) that indiates whih port, ounted lokwise from theurrent prinipal port, beomes prinipal (0 means that the prinipal port does not35



B�ehet & Lippimove).
�! y1 ynyi

xk x1Æxj
y1 ynyi
xk x1��xjWe write this rule [�; �℄! [;+i; Æ;+j℄ whih means that  replaes �, Æ replaes�, the prinipal port of  is the j-th lokwise port from the prinipal port of � andthe prinipal port of Æ is the i-th lokwise port from the prinipal port of �.An interation net that does not ontain two agents onneted by their prinipalport is irreduible. A net redues to another net by applying suessively zero, oneor several times hard interation rules to ouples of agents onneted through theirprinipal ports. Eah step substitutes the ouple by the right member of the rule.A hard interation system I = (�;R) is a set of symbols � and a set of hardinteration rules R where agents in the left and right members are instanes of thesymbols of �.A hard interation system I is deterministi when (1) there exists at most onehard interation rule for eah ouple of di�erent agent and (2) there exists at mostone hard interation rule for the interation of an agent with itself. In this ase, theright member of this rule must be symmetri from the entral point (this is neessaryfor a deterministi system). A hard interation system I is omplete when there isat least one rule for eah ouple of agent. In this paper we onsider deterministiand omplete systems. With these systems, we an prove that redution is stronglyonuent 3 . In fat, this property is true whenever the system is deterministi.3 Universal hard interation systemsUniversality means that every interation system an be simulated by a universalinteration system. Here, we use a very simple notion of simulation that is basedon interation net homomorphism.3.1 Interation net homomorphismLet � and �0 be two sets of symbols. An homomorphism � from � to �0 is a mapthat assoiates to eah symbol in � an interation net of agents of �0 with the sameinterfae. This homomorphism is naturally extended to interation nets of agentsof �.3 A system is strongly onuent if and only if when a net redues in one step to N and N 0, then N andN 0 redue in on step to a ommon net. 36



B�ehet & Lippi3.2 SimulationWe say that an homomorphism � from � to �0 de�nes a simulation of an interationsystem I = (�;R) by another interation system I 0 = (�0;R0) if the redutionmehanism on interation nets of I and I 0 are ompatible by � [8,1℄: for everyinteration net N of �:(i) N is irreduible if and only if �(N ) is irreduible;(ii) if N redues to M then �(N ) an redue to �(M).This de�nition brings some properties with omplete and deterministi interationsystems:(i) the translation of an interation net omposed of a unique agent must beirreduible;(ii) this translation has at most one agent whose prinipal port belongs to theinterfae and the symbol of this interfae that is onneted to this agent is thesame as the symbol that is onneted of the prinipal port of the original agent;(iii) this translation must be onnexe;(iv) an homomorphism is a simulation if (i), (ii) and (iii) are veri�ed and if the leftmember N (omposed of two agents) and the right member M of every rulein R verify �(N ) redues to �(M);(v) the simulation relation is transitive and symmetri.3.3 Universal hard interation systemA hard interation system U is said to be universal if for any hard interation systemI, there exists a simulation �I of I by U .4 A universal boolean interation systemIn this setion, we show how to simulate a partiular hard interation system I witha �xed hard interation system.4.1 Simulation with agents of arity 2We an normalize the arity of agents to always be 2. In fat, we have seen that a rulemay be haraterized by two informations for eah agent of the right member: thenew name and the number of lokwise shifts, from 0 to n, where the new prinipalport must be set.For I = (�;R), let N � 0 be the maximum arity of �. We de�ne �0 =f(
; 2)g [ f(�j ; 2) j (�; i) 2 � ; j 2 f0; : : : ; Ngg. Let �� the homomorphism wherean agent � of arity i is transformed into an agent �0 and i agents 
 eah of arity 2:37



B�ehet & Lippi
yn� yn�! y1y1 �0
 
We de�ne I 0 = (�0;R0), where R0 is de�ned as follows. For I, the rule between� and � results in  in plae of � with a lokwise shift of i for the prinipal portand Æ in plae of � with a lokwise shift of j for the prinipal port. This rule isreplaed by a rule between �0 and �0. The right member of the rule beomes iand Æj . If i = 0 (resp. j = 0) the prinipal port of i (resp. Æj) is the same as theprinipal port of �0 (resp. �0). Otherwise, the prinipal port is the next lokwiseport. For 1 � i � N , the rule between 
 and i (resp. Æi) replaes 
 by i�1 (resp.Æi�1) and i (resp. Æi) by 
. If i = 1, the prinipal port of i�1 (resp. Æi�1) is thenext lokwise port. Otherwise, it is the next ounter-lokwise port. For 
, it isthe next lokwise port.[�; �℄! [; i; Æ; j℄ is replaed by one of the following rules:� [�0; �0℄! [i; 0; Æj ; 0℄ if i = 0 and j = 0.� [�0; �0℄! [i; 0; Æj ;+1℄ if i = 0 and j 6= 0.� [�0; �0℄! [i;+1; Æj ; 0℄ if i 6= 0 and j = 0.� [�0; �0℄! [i;+1; Æj ;+1℄ if i 6= 0 and j 6= 0.The rules for 
 are:� [
; i℄! [i�1;+1;
;+1℄ if i = 1.� [
; i℄! [i�1;+2;
;+1℄ otherwise.Theorem 4.1 �� de�nes a simulation of I by I 0The proof is straightforward: the translation of an agent is a loop of agents whihis onnexe and irreduible and has only one prinipal port that is onneted in theinterfae to the same symbol as the original agent. Seondly, if N is the left memberandM the right member of a rule of I, ��(N ) redues to ��(M) (usually in morethan one step depending on the lokwise number of shifts of the prinipal ports ofthe agents between N and M).4.2 Boolean interation systemThe seond step in our onstrution onsists in the simulation of the boolean fun-tions. For that, we use boolean agents. This kind of agents has a name that isomposed of two informations: a boolean output state that an be either 0 or 1 andan internal state p. We note 0p and 1p these names. A boolean interation ruleonerning two boolean agents is a hard interation rule [�p; �q℄ ! [r;+i; Æs;+j℄(�; �; ; Æ 2 f0; 1g) that de�nes , r and i as funtions of �p and � (they do notdependent of q whih is the internal state of �q) and Æ, s and j as funtions of �qand � (they do not dependent of p whih is the internal state of �p).38
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�! y1 ynyj+1

xk x1rÆsxi+1
y1 ynyj+1
xk x1�p�q
xi+1This kind of hard interation system an be de�ned by a boolean funtion foreah symbol (and not for a ouple of agents as with a hard interation rule) that weall boolean interation rule: �p[�℄! [r;+i℄. This boolean rule desribes a half ofan interation rule. It says that an agent �p is transformed into an agent r whenit interats with an agent with a boolean output state �. The new prinipal port isthe i-th lokwise port from the urrent prinipal port. We all boolean interationsystems suh hard interation systems.4.3 Simulation of boolean iruitsEvery boolean funtion an be simulated by a partiular boolean agent. For in-stane, a logial binary NAND (not and) gate is simulating by an agent with 3ports (the arity of the symbols is 2). This gate reads the two inputs then givesthe result on its output. After this yle, the gate starts again to read the inputsand write the output in an endless loop. Starting with 0a on the �rst input port,the agent ontinues with the seond input port using one of the two boolean inte-ation rules: 0a[0℄ ! [0b;+1℄ or 0a[1℄ ! [0;+1℄. Then, after the interation withthe seond input, the gate delivers the result on the output port using one of thefour boolean inteation rules: 0b[0℄ ! [1d;+1℄, 0b[1℄ ! [1d;+1℄, 0[0℄ ! [1d;+1℄or 0[1℄ ! [0d;+1℄. Finally, the gate returns to the �rst input port, ready forthe next yle, using one of the four boolean inteation rules: 0d[0℄ ! [0a;+1℄,0d[1℄! [0a;+1℄, 1d[0℄! [0a;+1℄ or 1d[1℄! [0a;+1℄.A boolean dupliator is also helpful. This agent has one input and two outputs.It reads the input, puts it on the �rst output then on the seond output and startsagain a new yle. The operation are sequential like the NAND gate. Startingwith 0e on the input port, the agent goes to the �rst output using one of the twoboolean inteation rules: 0e[0℄ ! [0f ;+1℄ or 0e[1℄ ! [1f ;+1℄. Then, it swithes tothe seond output using one of the four boolean inteation rules: 0f [0℄ ! [0g;+1℄,0f [1℄ ! [0g;+1℄, 1f [0℄ ! [1g;+1℄ or 1f [1℄ ! [1g;+1℄. Finally the agent returns tothe input port, ready for the next yle, using one of the four boolean inteationrules: 0g[0℄! [0e;+1℄, 0g[1℄! [0e;+1℄, 1g[0℄! [0e;+1℄ or 1g[1℄! [0e;+1℄.The other kinds of logial operators like OR, NOT or AND are also easy tosimulate. In fat, every vetor of boolean funtion with several inputs and severaloutputs may be simulated by a boolean agent and its boolean inteation rules.39



B�ehet & LippiBut, the NAND and the boolean dupliator are enough to simulate every vetor ofboolean funtions.Theorem 4.2 Every (vetor of) boolean funtion an be simulated by a booleaninteration system using the previous symbols and their rules (this system has 5+5 =10 symbols).Proof. In fat, every boolean funtion of several variables an be omputed us-ing binary NAND gates. Beause eah variable an be used more than one, weneed a dupliator (the onnetions between dupliators and NAND gates must bedone arefully to avoid deadlok beause the inputs of NAND gates are tested ina ertain order and the outputs of dupliators are ativated in a ertain order).When a variable does not appear in the boolean funtion, we have to \forget" itsvalue. A very simple solution onsists in the introdution of this variable x into theboolean funtion f using the following formula: f is replaed by f or (x and not x).Thus every variable appears at least one in f and it is not neessary to forget anoutpout. 24.4 Simulation of boolean I/O hannelsTo �nish with the di�erent briks of our universal boolean interation system, weneed a boolean devie that reeives a validation that enables or not an I/O intera-tion. If the ommuniation is enabled the hannel writes the input bit to the I/Oport, waits for a boolean interation, reads the bit and opies it to the ouptut. Ifthe ommuniation is not enabled, the hannel opies the input bit to the ouputwithout interating through its I/O port.
I/O port EnableChannelInput

Output
This devie is simulated by a boolean agent. Starting with the state 0h, thisagent looks at the enable port. It swithes to the input port using one of the twoboolean interation rules: 0h[0℄ ! [0i;+1℄ or 0h[1℄ ! [0j ;+1℄. Then, it gets theinput bit and following the state, puts the prinipal port on the I/O port (state 0i)or on the output port (state 0j): 0i[0℄! [0k;+1℄, 0i[1℄! [1k;+1℄, 0j [0℄! [0l;+2℄ or0j [1℄! [1l;+2℄. If the ommuniation is enabled (states 0k or 1k), the hannel givesits boolean state through the I/O port and reads the boolean state of the booleanagent that is onneted to this port. The hannel then swithes to the output portusing one of the four boolean interation rules: 0k[0℄ ! [0l;+1℄, 0k[1℄ ! [1l;+1℄,1k[0℄! [0l;+1℄ or 1k[1℄! [1l;+1℄. Now, even if the ommuniation is not enabled,the agent returns to the ouput port its boolean state whih is either the read bit ora opy of the input bit. After that, it goes bak to the enable port using one of the40



B�ehet & Lippirules: 0l[0℄! [0h;+1℄, 0l[1℄! [0h;+1℄, 1l[0℄! [0h;+1℄ or 1l[1℄! [0h;+1℄.4.5 Simulation of a boolean interation ontrollerA boolean interation ontroller is a devie that has a state, input/output booleanhannels and a transitional funtion. The ontroller hooses one of its input/outputhannel, puts a boolean information on it, waits until it reeives a boolean informa-tion from the input/output hannel and, following its transitional funtion, hangesthe state. The ontroller repeats inde�nitely these same steps.
I=O1I=Ok ControllerChannel kChannel 1 TransitionfuntionNew stateCurrent state&InputEnable I/O kEnable I/O 1Input

OutputThe ontroller and the transition funtion an be simulated by a boolean inter-ation system using NAND and dupliators agents. Channels are simulated by thespeial boolean agent presented before. Thus, every boolean interation ontrolleran be simulated by a boolean interation system that has three kind of iruits:NAND, dupliators and hannels.4.6 Simulation of a hard interation systemIt is relatively easy to see that every hard interation system where the symbols arespei� to a port (the prinipal port of an agent must be the same eah time the samesymbol appears on the agent) like the system that we have after the simulation by asystem with agents or arity 2 an be simulated by a partiular boolean interationontroller.Theorem 4.3 The hard interation systems I 0 obtained by Theorem 4.1 an besimulated by a boolean interation ontroller (that depends of I 0).Proof. We need to ode the symbols of I 0 by binary numbers in a �nite spae. Ifthe system has N symbols, we need K � log2(N) bits. The ontroller an be buildin suh a way to operate with K bits rather than 1 (in the same spirit as we have32-bit proessors rather than 1-bit proessors). The hannels must exhange K bitsserially (like a serial ommuniation hannel ontrolled by miroode). 2Corollary 4.4 The system with NAND gates, dupliators and I/O hannels is uni-versal (the system has 5+5+7=17 symbols).5 ConlusionWe have shown that there exist universal boolean interation systems. Our universalsystem has 17 symbols and is very di�erent of Lafont's universal system. This41



B�ehet & Lippisystem is ertainly not optimal in the sense that it is surely possible to �nd auniversal boolean interation system with less symbols (and less rules) but booleaninteration systems are a speial ase of hard interation systems and a solution foruniversal hard interation systems does not neessary give a solution for booleaninteration systems.Referenes[1℄ Denis Behet. Universal interation systems with only two agents. In Proedings of the TwelveInternational Conferene on Rewriting Tehniques and Appliations, Utreht, The Netherlands, May2001, 2001.[2℄ S. Gay. Combinators for interation nets. In I. C. Makie & R. Nagarajan C. L. Hankin, editor,Proeedings of the Seond Imperial College Department of Computing Workshop on Theory and FormalMethods. Imperial College Press, 1995.[3℄ J.-Y. Girard. Linear logi. Theoretial Computer Siene, 50:1{102, 1987.[4℄ G. Gonthier, M. Abadi, and J.-J. Levy. The geometry of optimal lambda redution. In Proeedingsof the Nineteenth Annual Symposium on Priniples of Programming Languages (POPL '90), pages15{26, Albuquerque, New Mexio, January 1992. ACM Press.[5℄ G. Gonthier, M. Abadi, and J.-J. Levy. Linear logi without boxes. In Seventh Annual Symposium onLogi in Computer Siene, pages 223{234, Santa Cruz, California, June 1992. IEEE Computer SoietyPress.[6℄ Y. Lafont. Interation nets. In Seventeenth Annual Symposium on Priniples of ProgrammingLanguages, pages 95{108, San Franiso, California, 1990. ACM Press.[7℄ Y. Lafont. From proof nets to interation nets. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors,Advanes in Linear Logi, pages 225{247. Cambridge University Press, 1995. Proeedings of theWorkshop on Linear Logi, Ithaa, New York, June 1993.[8℄ Y. Lafont. Interation ombinators. Information and Computation, 137(1):69{101, 1997.[9℄ J. Lamping. An algorithm for optimal lambda alulus redution. In Seventeenth Annual Symposiumon Priniples of Programming Languages (POPL '90), pages 16{46, San Franiso, California, 1990.ACM Press.[10℄ S. Lippi. Enoding left redution in the lambda-alulus with interation nets. Mathematial Struturein Computer Siene, 12(6), Deember 2002.[11℄ I. Litovsky, Y.M�etivier, and E. Sopena. Graph relabelling systems and distributed algorithms. InH. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors, Handbook of graph grammars andomputing by graph transformation, volume 3, pages 1{56. World Sienti�, 1999.[12℄ I. Makie. The Geometry of Implementation (an investigation into using the Geometry of Interationfor language implemetation). PhD thesis, Departement of Computing, Imperial College of Siene,Tehnology and Medeine, 1994.[13℄ I. Makie. Interation nets for linear logi. Theoretial Computer Siene, 247:83{140, 2000.[14℄ Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformations,Volume 1: Foundations. World Sienti�, 1997.
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Abstract

We present polygraphic programs, a subclass of Albert Burroni’s polygraphs, as a computational model, showing how these
objects can be seen as first-order functional programs. We prove that the model is Turing complete. We use polygraphic
interpretations, a termination proof method introduced bythe second author, to characterize polygraphic programs that
compute in polynomial time. We conclude with a characterization of polynomial time functions.
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1 Introduction

Polygraphs are special higher-dimensional categories, introduced by Albert Burroni to pro-
vide a unified algebraic setting for rewriting [3]. For example, any term rewriting system
can be translated into a polygraph which has, in case of left-linearity, exactly the same
properties of termination and confluence [9,5].

Here, we study how these mathematical objects can be used as acomputational model.
Informally, computations generated by a polygraph are doneby a net of cells which indi-
vidually behave according to some local transition rules. This model is close to John von
Neumann’s cellular automata [15] and Yves Lafont’s interaction nets [8] with notable dif-
ferences: while von Neumann’s automata are essentially synchronous, interaction nets and
polygraphs are asynchronous; polygraphs have a much more rigid geometry than interac-
tion nets: the underlying graphs of the formers are directedacyclic graphs, preventing the
”vicious circles” of the latters.

Termgraph rewriting systems provide another model of graphical computation [14]:
it is an extension of term rewriting with an additional operation, sharing, that allows for
a more correct representation of actual computation. The translation of terms into poly-
graphs is close to the one into termgraphs and they seem to have the same properties, as
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

suggested by the first results in [7]. For example, let us consider the following term rewrit-
ing rule, used to compute the multiplication on natural numbers: mult(x;succ(y)) !
add(x;mult(x; y)). When applied, this rule duplicates the term correspondingto the ar-
gumentx. In termgraph rewriting, one is able to share it instead, so that there is no need
for extra memory space. This sharing operation can be algebraically formalized as an op-
eration with one input and two outputs, whose semantics is a duplication operation. In
polygraphs, one can have many such operations with many outputs, explicitely represented
and handled.

This is a key fact in our results on implicit computational complexity: indeed, the
interpretations we consider here, calledpolygraphic interpretations[5,7], can reflect the
fact that two outputs of the same operation have some links between them, as we will see
with the example of the list splitting function used in ”divide and conquer” algorithms.
This allows us to give complexity bounds where traditional polynomial interpretations [12]
cannot with the method described in [4,1] or to give better bounds, as indicated here and
in [7]. Moreover, the polygraphic interpretations give separated information on the spatial
and on the temporal complexities of functions.

This document is an overview of ideas and results from a paperby the same authors [2],
containing more comments, technical details and complete proofs. In section2 we intro-
duce the notion of polygraphic program in an informal way, give the corresponding se-
mantics we consider, introduce the leading example we consider, namely the polygraphic
program computing the ”fusion sort” on lists, and prove thatpolygraphic programs form a
Turing complete model of computation. In section3, we recall the notion of polygraphic
interpretation, give examples, define the notion of simple polygraphic program and prove
results on termination of polygraphic programs. In section4, we give polynomial com-
plexity bounds for simple programs and prove that they characterize the classPTIME of
functions computable in polynomial time by a Turing machine.

2 Polygraphs as a computational model

The general definition of polygraph can be found in documentsby Albert Burroni, Yves
Lafont and Franois Mtayer [3,9,13,10,11]. Here we give a rewriting-minded presentation
of a special case of polygraphs, seeing them as rewriting systems on algebraic circuits.

Definition 2.1 A monoidal 3-polygraphis a composite object consisting ofcells, pathsand
compositionsorganized intodimensions.

Dimension 1contains elementary sorts called1-cellsand represented by wires. Their
concatenation?0 yields product types called1-pathsand pictured as juxtaposed vertical
wires. The empty product� is also a1-path, represented by the empty diagram.

Dimension 2is made of operations called2-cells, with a finite number of typed inputs
and outputs. They are pictured as circuit gates, with inputsat the top and outputs at the
bottom. Using all the1-cells and2-cells as generators, one builds circuits called2-paths,
using the following two compositions: ?1=f fg g f g = fg?0
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

The constructions are consideredmodulosome relations, including topological deforma-
tion: one can stretch or contract wires freely, move2-cells, provided one does not create
crossings or break wires. Each2-cell and each2-path f has a1-path s1(f) as input, its
1-source, and a1-patht1(f) as output, its1-target. The compact notationf : s1(f)) t1(f)
summarizes these facts.

Dimension 3contains rewriting rules called3-cells. They always transform a2-path
into another one with the same1-source and the same1-target. Using all the1-cells,2-cells
and3-cells as generators, one can build reductions paths called3-paths, by application of
the following three compositions, defined forF going fromf to f 0 andG going fromg tog 0: F ?0 G goes fromf ?0 g to f 0 ?0 g 0; whent1(f) = s1(g), thenF ?1 G goes fromf ?1 g
to f 0 ?1 g 0; whenf 0 = g, thenF ?2 G goes fromf to g 0. These constructions are identified
modulosome relations, given in [6], where their3-dimensional nature was explained. The
relations allow one to freely deform the constructions in a reasonable way: in particular,
they identify paths that only differ by the order of application of the same3-cells on non-
overlapping parts of a2-path. A3-path iselementarywhen it contains exactly one3-cell.
Each3-cell and each3-pathF has a2-paths2(F) as left-hand side, its2-source, and a2-patht2(F) as right-hand side, its2-target. The notationF : s2(F)V t2(F) stands for these facts.

For monoidal3-polygraphs, rewriting notions are defined in a similar way as for term
rewriting systems, with terms replaced by2-paths, reduction steps by elementary3-paths
and reduction paths by3-paths [5]. Hence, anormal formin a polygraphP is a2-pathf
which is the2-source of no elementary3-path. The polygraphP terminateswhen it does
not contain infinite families(Fn)n2N of elementary3-paths such thatt2(Fn) = s2(Fn+1)
for all n. Other rewriting properties, such asconfluenceor convergenceare also defined in
an intuitive way.

Definition 2.2 A polygraphic programis a monoidal3-polygraph such that:� Its 2-cells are divided intostructure 2-cells, constructorsand functions. The structure2-cells consist of one : � ?0 � ) � ?0 � for each pair of1-cells (�; �), plus one: � ) � ?0 � and one : � ) � for each1-cell �. The constructors are2-cells such
with a1-cell as1-target. The functions are any2-cells.� Its 3-cells are divided betweenstructure 3-cellsandcomputation 3-cells. The structure3-cells are given, for every constructor : x) � and every1-cell �, by:x �� � � x� � x� � x� � xV V V V xx �� � x�� �
The2-targets of the3-cells of�23 use structure2-paths built from the structure2-cells by
using the following structural induction rules:

�� � = ��� = � =� ?0 x� � � x x ?0 � x �� = �= = �x=x ?0 � � ��x � x ?0 � =
The computation3-cells are3-cells whose2-source is of the shapet ?1 ', with ' a
function 2-cell andt a 2-path built only with1-cells and constructors. Furthermore,
there is a finite constant that bounds the number of structure2-cells in the2-target of
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

each computation3-cell.� For the present study, we assume that there exists a procedure to perform each step of
computation: more formally, for every3-pathF : f ! g containing exactly one3-cell,
the map givingg from (f; F) is computable in polynomial time.

Example 2.3 We consider the following polygraphic program with one1-cell, two con-
structors and , two functions and and four computation3-cells (we do not give
the structure cells): VV V V
With the constructors, one can represent the natural numbern, using for 0 and for the
successor operation, yielding a2-pathtn with zero input and one output. Furthermore, one
can check that this polygraph is convergent and that, giventm andtn, the normal form of(tm ?0 tn) ?1 is tm+n, while the one of(tm ?0 tn) ?1 is tmn.

Hence this polygraphic program computes the addition and the multiplication on natural
numbers: the1-cells are the data types, the2-paths�) � built only from constructors are
the values, while the result of the application of a functionwith n inputs to well-typed
values(t1; : : : ; tn) is the normal form of the2-path(t1 ?0 � � �?0 tn)?1 . This semantical
interpretation is formalized thereafter.

Definition 2.4 [Semantics] Let us fix a polygraphic programP. If � is a1-cell, a term of
type� is a 2-path built only with constructors and with� as1-target. Avalueor closed
term is a term with no input. The set of values with type� is denoted byV(�). Thedomain
of computationof P is the multi-sorted algebra made of the family of all the setsV(�)
equipped with the operations given, for each constructor : �1 ?0 � � � ?0 �n ) �, by the
map still denoted by: : V(�1)� � � � � V(�n)! V(�)(t1; : : : ; tn) 7! (t1 ?0 � � � ?0 tn) ?1 :
Let us consider a functionf from V(�1) � � � � � V(�m) to V(�1) � � � � � V(�n). ThenP
computesf if there exists a2-path, still denoted byf, from�1 ?0 � � �?0�m to �1 ?0 � � �?0 �n,
such that, for every family(t1; : : : ; tm) of values inV(�1)�� � ��V(�m), the2-path(t1 ?0� � � ?0 tm) ?1 f normalizes into the familyf(t1; : : : ; tm) of values inV(�1)� � � � � V(�n).
Example 2.5 Let us consider a polygraphic program that computes, among other func-
tions, thefusion sortfunction on lists of natural numbers. It has two1-cells, nat for
natural numbers andlist for lists of natural numbers. Its other cells, apart from structure
ones are:� Constructors: onen : � ) nat for each natural numbern, plus : � ) list for the

empty list and : nat ?0 list) list for the list constructor.� Functions: the main : list ) list for fusion sort, together with : list )
list ?0 list for splitting lists and : list ?0 list) list for merging them.
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL� Computation3-cells: VV V VV V p > qp q p q p qVV pqVp � q V
Note that the last two rules for the function are not conditional: there is exactly one of
them for each pair(p; q) of natural numbers, depending ifp � q orp > q. However, these
two conditions are computable (in linear time), preventingsuper-Turing computations. We
have chosen a simplified representation of natural numbers which considers them as being
predefined, at the ”hardware level”, together with their predicate�. The reason for this
choice is to postpone the study of modularity and of theif-then-else construction to
subsequent work.

Theorem 2.6 Polygraphic programs form a Turing-complete model of computation.

Proof. Here we give a sketch of the proof, while the complete one can be found in [2].
Any Turing machine can be translated into a polygraphic program whose values are the
words written in the alphabet of the machine and whose functions are the transitions steps
generated by the machine transition function. More formally, the considered polygraphic
program has one1-cell, plus:� Constructors: one : 0) 1 for the empty word plus onea : 1) 1 for each lettera.� Functions: one : 1 V 1 for the function to be computed plus onestepq;a = q a :2) 1 for each stateq and each lettera, including the blank symbol℄.� Computation3-cells are given thereafter, the first rule initializing thecomputation, the

four subsequent families replicating the transitions of the Turing machine and the final
family starting the computation of the result:V

both whenÆ(q; a) = (q 0; ; L)
both whenÆ(q; a) = (q 0; ; R)V VVb V

Vb bb ℄aqf a
q0 ℄
q q 0qq a a q 0q a ℄q 0q 0

Let us asume that the machine is in a stateq, reading a lettera, with wl andwr the two
words respectively written on the left ofa, from right to left, and on the right ofa, from left

to right. Then, this state of the system is represented by the2-path(wl ?0wr)?1 q a . It is
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3 POLYGRAPHIC INTERPRETATIONS AND SIMPLE PROGRAMS

straightforward to check that each step of the Turing machine corresponds to an elementary3-path of its polygraphic version. 2
3 Polygraphic interpretations and simple programs

Intuitively, a polygraphic interpretations sees2-paths as electrical circuits, whose com-
ponents are their2-cells. The circuits have currents plugged into their inputs, and these
currents propagate into the circuits according to the ”current maps”'� associated to each2-cell '. A circuit produces heat, given by the sum of the ”heat maps”['℄ of the2-cells
it is made of. In the case of polygraphic programs, we will seethat current and heat maps
can be used to give information respectively on the spatial size and on the temporal size of
computations. Polygraphic interpretations have been introduced, in a more general version,
in [5].

Definition 3.1 A polygraphic interpretationof a polygraphic programP consists into a
mapping of each2-pathf with m inputs andn outputs onto two monotone mapsf� = f :Nm ! Nn and[f℄ = f : Nm ! N, such that the following conditions are satisfied:� For every1-pathx of lengthn, we havex� = IdnN and[x℄ = 0.� For every2-pathsf andg, the following equalitities hold when defined:gf ?1 g+f gf ?0 g = =f gf ?0 g = ff ?1 g = + fgf
Given an interpretation and a2-cell ', we denote by'j� the jth component of the map'�.
An interpretation ofP generates a binary relation denoted by�: it is defined, on2-pathsf
andg with the same2-source and the same2-target, byf � g when the two inequalitiesf�(i) � g�(i) and[f℄(i) > [g℄(i) hold for every possible familyi of natural numbers. An
interpretation iscompatiblewith a 3-cell � whens2(�) � t2(�) andweakly compatible
with � if s2(�) � t2(�).
It was proved in [5] that an interpretation is entirely determined by its values on the2-cells
of the polygraph, that the binary relation� is a terminating strict order and that context are
strictly monotone with respect to it. These are steps towards:

Theorem 3.2 ([5]) If a polygraphic program admits an interpretation which is compatible
with all of its3-cells, then it terminates.

Example 3.3 Let us assume that we have a current map(�)� on a polygraphic program
such that the following conditions hold:� If is a constructor withn inputs, then �(i1; : : : ; in) > i1 + � � � + in.� One structure2-cells, we have �(i; j) = (j; i) and �(i) = (i; i).
We define a heat map[�℄S as follows:� If is a constructor or a function, then

� �S = 0.� On structure2-cells, we have
� �S (i; j) = ij, � �S (i) = i2 and

� �S (i) = i.
It is proved in [2] that these values generate a polygraphic interpretation compatible with
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3 POLYGRAPHIC INTERPRETATIONS AND SIMPLE PROGRAMS

the structure3-cells. Hence theorem3.2 tells us that a polygraphic program without com-
putation3-cell terminates.

Definition 3.4 Given a current map(�)� on a polygraphic program that satisfies the condi-
tions of example3.3, the heat map[�℄S is calledstructure heatgenerated by(�)�.
Definition 3.5 We denote byN[x1 ; � � � ; xn℄ the algebra of polynomials inn variables and
coefficients inN. Let P be a polygraphic program. A polygraphic interpretation issimple
when the following conditions are met:� For any2-cell' with m inputs andn outputs, the maps

Pnj=1'j� and['℄ are polynomi-
als ofN[x1 ; : : : ; xm℄.� If  is a constructor withn inputs, then� =Pmi=1 xi + a with 1 � a < a, wherea
is a constant depending on the program. Moreover,[℄ = 0.� On structure2-cells, one has (i; j) = (j; i) and (i) = (i; i). Moreover, structure
cells produce no heat:

� � (i) = 0; � � (i; j) = 0; � � (i) = 0.� For every function' with m inputs andn outputs and for every family(i1; : : : ; im) of
natural numbers, we have

Pnj=1'j�(i1; : : : ; im) � i1 + � � � + im.

A polygraphic program is calledsimplewhen it admits a simple polygraphic interpretation
which is compatible with all of its computation3-cells.

Theorem 3.6 A simple polygraphic program terminates.

Proof. Let P be a simple polygraphic program and let(�)� and[�℄ be the current and heat
maps of a simple interpretation, compatible with all the computation3-cells ofP. It is a
direct computation to check that such an interpretation is weakly compatible with the struc-
ture3-cells ofP. Hence, we deduce thatP terminates if and only if the polygraphic programQ does, whereQ is built fromP by removal of the computation3-cells. The map(�)� also
satisfies the conditions to generate a structure heat map[�℄S proving the termination ofQ.2
Example 3.7 Let us prove that the polygraphic program of example2.5 is simple. Let us
consider the interpretation generated by these values:� n � = 1, � = 1, �(i; j) = i+ j + 1;� �(i) = i, �(i) = (di=2e ; bi=2), �(i; j) = i+ j;� � � (i) = 2i2, � � (i) = i, � � (i; j) = i+ j.
We have used the notationsd�e andb� for the rounding functions, respectively by excess
and by default. This interpretation meets the conditions ofdefinition 3.5 and, thus, is
simple. Now, one has to check that it is compatible with all the computation3-cells: we
give some of the computations for the last3-cell of the function . Let us start with(�)�.
On one hand: !� (i; j; k) = � �� �i; �(j; k)� = � Æ � �i; �(j; k)� = i+ j+k+ 2:
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4 COMPLEXITY OF SIMPLE PROGRAMS

And, on the other hand:0BB� 1CCA� (i; j; k) = i+ j+ dk=2e + bk=2+ 2 = i+ j+ k+ 2:
Now, let us consider[�℄. For the2-source of the3-cell, one gets:" # (i; j; k) = � � (i+ j+ k+ 2) = 2 � (i + j+ k+ 2)2:
And, for its2-target,

2664 3775 (i; j; k) is equal to:� � (k) + � � (i+ dk=2e+ 1) + � � (j + bk=2+ 1) + � � (i+ dk=2e+ 1; j + bk=2+ 1)= 2 � (i+ dk=2e+ 1)2 + 2 � (j + bk=2+ 1)2 + i+ j+ 2k+ 2:
We conclude by considering two cases, depending on the parity of k.

Example 3.8 For the polygraphic program of example2.3, the following values generate
a simple interpretation which is compatible with the four computation3-cells:� � = 1, �(i) = i+ 1, �(i) = (i; i), �(i; j) = i+ j, �(i; j) = ij;� � � = � � (i) = � � (i) = � � (i) = 0,

� � (i; j) = i, � � (i; j) = (i+ 1)j.
4 Complexity of simple programs

Definition 4.1 Let P be a polygraphic program. Iff is a 2-path ofP, we denote byjjfjj
the number of2-cells f is made of. IfF is a3-path ofP, we denote byjjjFjjj the number of3-cellsF is made of.

LetP be a simple program with a fixed interpretation made of(�)� and[�℄. We want to prove
that (�)� is a good estimation of the size of values computed byP, given byjj�jj, while [�℄
is one for the size of the computations, given byjjj�jjj. Once again, the complete proofs are
in [2]. By induction on the size of values, we prove that(�)� is an estimation of the size of
values:

Lemma 4.2 For every valuet, the inequalitiesjjtjj � t� � a jjtjj hold inN.

Using the properties of the polygraphic interpretation we consider and lemma4.2, we prove
that the size of intermediate and of final values are bounded by a polynomial in the size of
the initial values:

Proposition 4.3 Let ' be a function withm inputs andn outputs. LetP' be the poly-
nomial inN[x1 ; : : : ; xm℄ defined byP' = Pnj=1'j�(ax1; : : : ; axm). Let t be a family of
values of types1(') and let us assume thatt?1' reduces into a2-path of the shapeu?1 ,
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4 COMPLEXITY OF SIMPLE PROGRAMS

whereu hasp outputs. Then the inequality
Ppj=1 uj� � P'(jjt1jj ; : : : ; jjtmjj) holds. In

particular, if u = '(t), the inequalityjj'(t)jj � P'(jjt1jj ; : : : ; jjtmjj) holds.

Example 4.4 If one computes these polynomials for the simple polygraphic program of
example2.5, one sees that, for any listt, the sorted list (t) and all the intermediate values
computed to reach the result have their sizes bounded by the size of t:P (x) = �(1 � x) = x, P (x; y) = �(1 � x; 1 � y) = x+ y,P (x) = 1�(1 � x) + 2�(1 � x) = dx=2e+ bx=2 = x.

For the polygraphic program of example2.3, one getsP (x; y) = x + y andP (x; y) =xy. Hence, the current maps give us information on the spatial complexity of the computa-
tion, separated from the length of computations.

Now we interest ourselves into polynomial bounds for the length of computations. We start
by a technical lemma, which proves that, during a computation, the potential structure heat
increase due to the application of a computation3-cell is polynomially bounded by the size
of the arguments.

Lemma 4.5 We denote byK the constant bounding the number of structure2-cells in the2-target of every computation3-cell. Let' be a function withm inputs. We denote byS'
the polynomialK � P2'. Let t be a family of values of types1('), let f andg be 2-paths
such thatt ?1 ' reduces intof which itself reduces intog by application of a computation
rule �. Then the following inequality holds:[f℄S + S'(jjt1jj ; : : : ; jjtmjj) � [g℄S:
Proof. The complete, technical proof is in [2]. Here we recall the main reasoning steps. We
denote by� : aV b the computation3-cell used to reducef intog. We decomposef andg
to makea andb appear and use the properties of current and heat maps to conclude that
the inequality[f℄S + [b℄S(i1; : : : ; im) � [g℄S holds, for some natural numbersi1, : : : , im.
Then we prove that[b℄S(i1; : : : ; im) is polynomially bounded by the size oft. By definition
of the structure heat,[b℄S(i1; : : : ; im) is the sum of all the structure heats produced by
the structure2-cellsb is made of. Then we use proposition4.3 to prove that the current
incoming in each input of each structure2-cell of b is bounded byP'(jjt1jj ; : : : ; jjtmjj).
Then, by definition of[�℄S on structure2-cells, we conclude that the structure heat produced
by each one is at mostP2'(jjt1jj ; : : : ; jjtmjj). Finally, we use the fact thatb is the2-target of
a computation3-cell to deduce that there is at mostK structure2-cells inb. 2
Example 4.6 For the polygraphic program of example2.5 we haveK = 1, S (x) = x2,S (x) = x2 andS (x; y) = (x + y)2. For the one of example2.3, we haveK = 1,S (x; y) = (x+ y)2 andS (x; y) = x2y2.
Now let us prove that the length of a computation is polynomially bounded by the size of
the arguments.

Proposition 4.7 Let' be a function withm inputs. We define the following polynomials:Q'(x1; : : : ; xm) = ['℄(ax1; : : : ; axm) and R' = Q' � (1 + S'):
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Let t be a family of values of types1('), let F be a3-path with2-sourcet ?1 ', made ofk
computation3-cells andl structure3-cells. Then the following inequalities hold:k � Q'(jjt1jj ; : : : ; jjtmjj)) and l � Q'(jjt1jj ; : : : ; jjtmjj)) � S'(jjt1jj ; : : : ; jjtmjj)):
As a consequence,jjjFjjj � R'(jjt1jj ; : : : ; jjtmjj) holds.

Proof. We decomposeF into a?2-composite of elementary computation3-paths followed
by structure3-paths. Using the fact that the heat map we consider is strictly decreasing on
computation3-cells and weakly decreasing on structure3-cells, we deduce that[t ?1 '℄ is
minored byk. We use the properties of[�℄ and lemma4.2 to get the bound we seek onk.
Then, we apply proposition4.7 to each of the structure3-paths we have isolated. We sum
up the resulting inequalities and use the facts that[t ?1 '℄S = 0 and [t2(F)℄S � 0 to getk � S'(jjt1jj ; : : : ; jjtmjj) � l. We deduce the inequality onl from this one and the one onk.
We conclude by using the equalityjjjFjjj = k+ l. 2
Example 4.8 For the functions of example2.5, we haveQ (x) = 2x2, Q (x) = x andQ (x; y) = x + y. For example, let us fix a listt. The polynomialQ tells us that,

during the computation of the sorted list(t), there will be at mostjjtjj applications of a
computation3-cell. The polynomialR guarantees that there is no more thanjjtjj2 (1+jjtjj2)
applications of rules. On the examples we have considered, the polynomialQ' gives a
bound that is close to known ones but the polynomialR' gives a very overestimated bound.
To get a better estimation, we will have to work on the structure heat increase boundS'.

Theorem 4.9 Functions computed by simple polygraphic programs are exactly PTIME

functions.

Proof. We start by proving that functions computed by simple polygraphic programs are in
PTIME. Proposition4.7 tells us that the length of any computation in such a polygraph are
polynomially bounded by the size of the arguments. Furthermore, each step of computation
can be done in polynomial time with respect to the size of the current2-path: we find a redex
in a directed acyclic graph with decorations then replace itby the corresponding reduce and
both operations can be done in polynomial time.

Now let us prove that anyPTIME function can be computed by a simple polygraphic
program. The first step is to translate a Turing machine equipped with a clock into a poly-
graphic program. We fix a functionf in PTIME, a Turing machineM that computesf
and a polynomialP that bounds the length of the computation. We consider a copyof the
polygraphic program of example2.3which computes addition and multiplication of natural
numbers, with its1-source denoted bynat. Let us note that this polygraphic program com-
putes any polynomials, includingP. Then we extend it with a variant of the polygraphic
Turing machine of section2, made of a1-cell mon; its constructors are the empty word: mon ) mon and each lettera : mon ) mon of the alphabet ofM; its functions are
the main : mon ) mon for f, plus a size function : mon ) nat, plus the modifiedq a : nat ?0 mon ?0 mon) mon for each stateq of M and each lettera in the alphabet
of M, including the blank symbol℄; its computation3-cells are:
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4 COMPLEXITY OF SIMPLE PROGRAMSVb  b   both whenÆ(q; a) = (q 0; ; L)
both whenÆ(q; a) = (q 0; ; R)VV VV

V P V a V℄ a
q aq a q 0 b q 0q a q 0 ℄q a q 0 b ℄

q0 qf
Then, one checks that this polygraphic program mimics the transition of the original Turing
machineM and, thus, computesf. We conclude by checking that the following polygraphic
interpretation, extending the one already built on naturalnumbers, is simple and compatible
with each computation3-cell:� � = 1, a �(i) = i+ 1, �(i) = i, q a �(i; j; k) = i+ j+ k, �(i) = P�(i) + i+ 1.� � � (i) = i, h q a i (i; j; k) = i, � � (i) = [P℄(i) + P�(i) + i+ 1. 2
References

[1] Guillaume Bonfante, Adam Cichon, Jean-Yves Marion and Hlne Touzet,Algorithms with polynomial interpretation
termination proofs, Journal of Functional Programming 11 (2001), no. 1, 33–53.

[2] Guillaume Bonfante and Yves Guiraud,Programs as polygraphs: computability and complexity, Submitted, 2006.

[3] Albert Burroni, Higher-dimensional word problems with applications to equational logic, Theoretical Computer
Science 115 (1993), no. 1, 43–62.

[4] Adam Cichon and Pierre Lescanne,Polynomial interpretations and the complexity of algorithms, Lecture Notes in
Artificial Intelligence 607 (1992), 139–147.

[5] Yves Guiraud,Termination orders for 3-dimensional rewriting, Journal of Pure and Applied Algebra 207(2006), no. 2,
341–371.

[6] , The three dimensions of proofs, Annals of Pure and Applied Logic 141 (2006), no. 1-2, 266–295.

[7] , Polygraphs for termination of left-linear term rewriting systems, Submitted, 2007.

[8] Yves Lafont,Interaction nets, Principles of Programming Languages, ACM Press, 1990, pp.95–108.

[9] , Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184 (2003), no. 2-3,
257–310.

[10] , Algebra and geometry of rewriting, Preprint IML, 2006.

[11] Yves Lafont and Franois Mtayer,Polygraphic resolutions and homology of monoids, Preprint IML, 2006.

[12] Dallas Lankford,On proving term rewriting systems are noetherian, Tech. report, Louisiana Tech University, 1979.

[13] Franois Mtayer,Resolutions by polygraphs, Theory and Applications of Categories 11 (2003), 148–184.

[14] Detlef Plump,Term graph rewriting, Handbook of Graph Grammars and Computing by Graph Transformation 2 (1999),
3–61.

[15] John von Neumann,Theory of self-reproducing automata, University of Illinois Press, 1966.

53



TERMGRAPH 2007

Rewritings for Polarized Multipliative andExponential Proof StruturesChristophe Fouqueré1 ;2LIPN-UMR7030Université Paris 13, CNRSVilletaneuse, FraneVirgile Mogbil1 ;3LIPN-UMR7030Université Paris 13, CNRSVilletaneuse, FraneAbstratWe study onditions for a onurrent onstrution of proof-nets in the framework of linear logi followingAndreoli's works. We de�ne spei� orretness riteria for that purpose. We �rst study the multipliativease and show how the orretness riterion given by Danos and deidable in linear time, may be extendedto losed modules (i.e. validity of polarized proof strutures). We then study the exponential ase and givea orretness riterion by means of a ontration relation that helps to disover frontiers of exponentialboxes.Keywords: linear logi, proof-nets, logi programming, foalization.1 IntrodutionGirard in his seminal paper [9℄ gave a parallel syntax for multipliative linear logi(MLL) as oriented graphs alled proof-strutures. Let us reall that a MLL formulais either an atomi formula A, a negation of an atomi formula A?, or built with abinary onnetive 
 or P. In the original de�nition, a proof-struture for MLL isonstruted by means of the following binary links:
-link: A BA
B
 P-link: A BA P BP axiom-link: A A?1 Partially supported by ACI NIM projet Géométrie du Calul (GEOCAL), Frane.2 Email: f�lipn.univ-paris13.fr3 Email: vm�lipn.univ-paris13.frThis paper is eletronially published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents

mailto:cf@lipn.univ-paris13.fr
mailto:vm@lipn.univ-paris13.fr


Fouquere and Mogbilwhere every ourrene of formula is a premise of at most one link and is a onlusionof exatly one link. A orretness riterion enables one to distinguish sequentializ-able proof-strutures (the so alled proof-nets) from "bad" strutures (that do notorrespond to proofs in the sequent alulus). After Girard's long trip orretnessriterion, numerous equivalent properties were found. In partiular, Danos andRegnier [7℄ proved that swithed proof-strutures should be trees, where swithingis done by deleting one of the premises of eah P-link. Danos [6℄ showed that it isthe ase i� the proof struture rewrites to � (
 is alled a ontrated node):(1) 
 �! (2) �! (3) P �! (4) P �!While a lot of researh has been done on �nding e�ient orretness riteria for MLL,it still remains to study orretness riteria in ase of polarized proof-strutures inMLL, and broaden it to the exponential ase. First used by Andreoli in LogiProgramming [1℄ and also onsidered in Girard's works [10℄ and in Laurent's worksabout Polarized Linear Logi [13℄, this onept of polarization allows to onsiderlustered strutures. Reently, polarized proof strutures arose naturally in logiprogramming models [2,3,4℄. The basi objets we onsider are then proof strutureswith two strata we all elementary bipolar modules, that may be omposed to getmodules. We reall the multipliative ase in the following setion (the reader may�nd in [8℄ extension to open modules). We de�ne a orretness riterion that takesare of the parallel struture of modules, extending the Danos riterion. In setion 3,we analyze how modules may be generalized to take are of exponentials.2 The multipliative aseWe onsider in this setion the extension MLLu of MLL with 1 the unit of 
.Formulae F of MLLu are given by the following grammar (we allow 1 either aloneor as part of a tensor):F := 1 j GG := A j A? atomi formula or its negationj G
 1 j 1
G j G
G j G P GA binary sequent alulus for MLLu is given in Fig. 1. Let PS be the diretedgraphs where edges are labelled by formulae of MLLu and built with the followinglinks (n � 1):
-link: A1 
 � � � 
An
A1 An P-link: A1 P : : : P AnPA1 An axiom-link: A A? 1-link: 11possibly with edges pending downwards. Elements of PS are still alled proof stru-tures. Formulae labelling pending edges are the onlusions of the proof struture,nodes with pending edges are alled onlusion nodes. A proof struture is sequen-tializable if the sequent de�ned with the onlusions of the proof struture is provable55



Fouquere and Mogbil` A?; A (axiom) ` 1 (1) ` �; A ` A?;�` �;� (ut)` �; G1 ` G2;�` �; G1 
G2;� (
) ` G1; G2;�` G1 P G2;� (P)Fig. 1. Binary sequent alulus for MLLu.in MLLu. A sequentializable proof struture is alled a proof-net. Labels on edgesare omitted when lear from the ontext.Proposition 2.1 Let � be a proof struture of PS, � is a proof-net (i.e. sequen-tializable) i� � !� � where ! is given by the following rules:(1) 
 �! (2) �! (3) 1 �!(4) P �! (5) P �! (6) P �!In ase (4), there must exist at least one edge between the two nodes.The proof of the proposition follows from the standard one on binary proofstrutures for MLL [6℄, and the following remarks: 
 and P are assoiative andommutative, the 1-ary P onnetive is by onvention the identity, 1 is a unit for 
.We �rst give the de�nition of an elementary bipolar module (EBM) and give theorrespondene with proof strutures. We then de�ne a module as the omposition ofEBMs. A module is orret if the orresponding proof struture is sequentializable.De�nition 2.2 [EBM℄ An EBM M is given by a �nite set H(M) of propositionalvariables (alled hypotheses) hi and a non empty �nite set C(M) varying over k of�nite sets Ck(M) of propositional variables (alled onlusions) jk. Variables aresupposed pairwise distint. 4 The set of propositional variables appearing in M isnoted v(M). It is denoted as a direted graph with labelled pending edges and twokinds of nodes, one positive pole under a non-empty �nite set of negative poles:j11 jKKhiThe set of pending edges of an EBM M is alled the border b(M).The proof struture orresponding to an EBM is given by the following transfor-mation on poles. The onverse transformation requires the de�nition of BMs de�nedlater. if Ck(M) = ;: ! 1 , if Ck(M) 6= ;: jkk ! Pz }| {jk?k4 This restrition is taken for simpliity. The framework an be generalized if we onsider multisets (ofhypotheses and onlusions) instead of sets, and add as required a renaming mehanism: the results in thispaper are still true. 56



Fouquere and Mogbil
hi ! 
z}|{hiAn EBMM may be equivalently de�ned as a (type) formula t(M) in the dual lan-guage of MLLu (reall that A( B = A? P B): t(M) = (Ni hi)( (�k(Njk jkk )),where we use the onvention that�k Fk =Nk Fk = F1 when the domain of k is ofardinal 1, and if the domain of i is empty, (Ni hi)( C = C and if the domain ofjk for some k is empty, (Njk jkk ) = ?. The reader should are that this supposesa bilateral sequent alulus, although the logial reading of an EBM (or of a proofstruture) is unilateral. Three kinds of EBMs are of speial interest: An EBM isinitial (resp. �nal) if its set of hypotheses is empty (resp. its set of onlusions isempty). An EBM is transitory if it is neither initial nor �nal. Initial EBMs allowto delare available resoures, though �nal EBMs stop part of a omputation bywithdrawing a whole set of resoures. Transitory EBMs are alled de�nite lausesin standard logi programming.De�nition 2.3 [BM℄ A bipolar module (BM) M is de�ned with hypotheses H(M),onlusions C(M), and type t(M), indutively in the following way:� An EBM is a BM.� Let M be a BM, and N be an EBM, let I = C(M)\H(N), their omposition wrtthe interfae I,MÆIN is a BM with the multiset of hypothesesH(M)[(H(N)�I),the multiset of onlusions (C(M)�I)[C(N), the type t(M)
 t(N) and variablesv(M) [ v(N).The interfae will be omitted when it is lear from the ontext. Note that theinterfae may be empty. The translation from proof strutures of PS to BMs isgiven by the two following rules, plus rules not expliited here due to lak of spaethat take are of polarity (a unary tensor node (resp. Par) is added in betweenif (resp. a negation of) a propositional variable is a premise of a Par node (resp.tensor)) and the onstant 1:

P 
z }| {� �! P p? p 
z}|{� where p is a fresh atomi for-mula

z}|{hi 1 1Pz }| {j1?1 Pz }| {jK?K �! j11 jKKhiConsidering BMs in plae of proof strutures for MLLu has valuable onsequenesin terms of simpliity of orretness riteria as one an take are of the bipolestruture of BMs more diretly than it is the ase with a binary struture.De�nition 2.4 [Corretness (wrt sequentialization)℄ Let M be a BM, M is orretif the orresponding proof struture in PS is sequentializable.57



Fouquere and Mogbilz }| {�� z }| {Æ �!! z }| {� z }| {� Æ
� � z }| {Æ �!! � � z }| {ÆFig. 2. Big step redution relation.Sequentialization means that there exists a formula C built with the onnetives
 and P, and the variables C(M) suh that the sequent H(M); t(M) ` C is provablein Linear Logi.A losed module is a BM without any pending edges, i.e. with the sets of hy-potheses and onlusions empty. Corretness of losed modules may be tested eitherin terms of provability in a sequent alulus or by means of orretness riteria forproof strutures. In the following, we onsider the orretness riteria of Danos [6℄using a ontration relation and explained in the previous setion, and also the onegiven by Danos and Regnier [7℄ that uses swithings: let � be a proof struturewith binary links and S(�) the set of (swithed) graphs obtained from � by remov-ing exatly one premise edge for eah P link, � is a proof net i� eah graph inS(�) is ayli and onneted. One generalizes this de�nition to n-ary onnetivesby introduing generalized swithes: eah n-ary P onnetive indues n swithedgraphs. One still an de�ne swithed proof-strutures and a riterion generalizingDanos-Regnier orretness riterion on PS: a proof struture � is a proof net i�the graphs in S(�) are ayli and onneted. A losed module M is DR-orret ifthe proof struture M� assoiated to M is a proof net wrt the previous riterion.We abusively refer to the module M instead of the orresponding proof strutureM� in the following, speaking of for instane swithed module instead of swithedproof struture. We immediately have the following proposition as a orollary of theDanos and Regnier riterion theorem:Proposition 2.5 Let M be a losed module, M is orret i� M is DR-orret.We give below a (big step) redution relation that takes are of the foalizationproperty. Though a Danos-like relation would redue eah step one variable, ourformulation uses as a whole the struture of a module thanks to foalization. Thefoalization property states that a sequent is provable i� there exists a proof suhthat deomposition of the positive stratum of formulae is done in one step. Consid-ering bipolar modules, it means that one may de�ne a redution relation suh thateah step redues one positive-negative pair of nodes.Proposition 2.6 (Stability) Let M and N be two losed modules suh that M �N , M is orret i� N is orret (see Fig. 2).Proof. One an de�ne a funtion from the swithed strutures of the module onthe left of the relation onto the swithed strutures assoiated to the module on theright suh that a swithed struture from the left is ayli (resp. onneted) i� theorresponding swithed struture from the right is ayli (resp. onneted). 2Theorem 2.7 (orretness) A losed module M is orret i� M !!� [?O.58



Fouquere and MogbilProof.� Suppose M !!�[?O. As[?O is orret, by prop. 2.6, we dedue that M is orret.� Suppose M is orret. Let N be a normal form of M wrt !!, then by proposi-tion 2.6, N is orret. Let us de�ne a partial relation on negative poles of N : letm and n be two negative poles, m < n if 9p a positive pole suh that m is linkedto the bottom of p and n is linked to the top of p. We onsider the transitivelosure of this relation. We prove a ontradition if N is in normal form, orretand di�erent from [?O:� either there is no maximal negative pole. Let us suppose 9m suh that m < m.Then there exists one yle ontaining m in the module alternating positive andnegative poles. We an then de�ne a swithing funtion on the module (hoosingthe orret links for negative poles) suh that the swithed module has a yle.Hene ontradition with the fat that N is orret.� or let m be a maximal negative pole and p the orresponding positive pole.If p has other negative poles, N is not in normal form as we an omit themaximal negative pole by neutrality.If p has no other negative poles and no inoming link then N is either equal to[?O or not onneted hene not orret.If p has no other negative poles and eah inoming negative pole has at leastone link going to another positive pole, then one an de�ne a swithing funtionusing for eah of these negative poles one of the links that does not go to p:the swithed module is not onneted. Hene ontradition with the fat thatN is orret.If p has no other negative poles and there exists one inoming negative polewith the whole set of links going to p, the �rst rule applies: N is not in normalform. 2Note that this proof extensively uses the bipolar nature of modules. Moreover,the proof may have been given onsidering minimal poles in plae of maximal poles,and for eah proof only one of the two redution rules is su�ient and neessary!Finally, the same tehnique Guerrini [11℄ used for Danos riterion may be appliedhere to get a linear algorithm. We detailed in another paper the extension of thetehnique presented before to open modules as it is a neessary step towards thespei�ation of a logi programming language based on bipolar modules [8℄.3 Dealing with exponentials3.1 Multipliative exponential linear logi (MELL)Adding exponentials to the language obviously inreases its expressivity: it allowsfor representing reusable resoures. In linear logi, the 'of ourse' modality ! hasthis main property: !A( A
 � � � 
A. Tehnially, three operations are neessary:ontration, derelition and weakening. The �rst operation states that !A is dupli-able. Derelition allows to onsider the lassial formula !A as the linear one A.The last operation states that !A may be forgotten. The dual modality 'why not' ?59



Fouquere and Mogbilmay be interpreted in the following way: ?A? waits for the 'lassial' resoure !A.This promotion operation is more omplex than the other operations: in terms ofproofnets, orretness is assured if a 'box' in the proof net haraterizes the ontext(and this ontext has to be orret by itself). Entries of suh a box are given by one! and a set of ?.3.1.1 From MELLu to ?-EBMs.The translation from formulae of MELL to modules is not as easy as it is withoutexponentials. We onsider an extension MELLu of MELL with the neutral element1 for 
, a formula F of MELLu is given by the following grammar:F := 1 j GG := A j A? j G
 1 j 1
G j G
G j G P G j ?G j !GConverting from formulae to modules requires the use of polarization and foal-ization. Foalization allows to onsider n-ary onnetives. Formulae are polarizednegatively or positively aording to their main onnetives, onsidering onvenientlythat variables A;B; : : : are positive whereas their negations A?; B?; : : : are nega-tive. A preise study of the exponential onnetives leads to the aknowledgmentthat exponential onnetives hange the polarity of formulae: if A is a positive for-mula, ?A is negative whereas !A? is positive. Hene exponential onnetives may besplit into two parts: !A? = #℄A? and ?A = "[A. The shift onnetives # and " dothe hanging of polarities. The introdution of shift onnetives may be generalizedalso to the linear ase whenever there is a hange of polarity. The two modalities [and ℄ express exponentiality.We onsider a slightly di�erent version of a polarized system as it was designedby Boudes [5℄ or Laurent [13℄: the system LLpol given by Laurent takes are ofmultipliative as well as additive onnetives where atomi formulae are always ex-ponentialized. Following our motivations, our language nMELLpol is restrited tothe multipliative ase for simpliity and atomi formulae may be linear or expo-nential. Finally we use n-ary onnetives and the deomposition of exponentials isexpliit. The grammar for nMELLpol is given in the following way where the set offormulae is expliitly split into positive (P; : : : ) and negative (N; : : : ) formulae (Ais a positive atomi formula):8<:P := Ni2I �i j [(Ni2I �i)� := A j #N 8<:N := Pk2K �k j ℄(Pk2K �k)� := A? j "PWe keep as onvention that a 1-ary tensor is the identity and a 0-ary tensor isthe tensor unit 1. Moreover, one an remark that de�ning 1 as #℄>, where > isthe neutral for the additive onnetive & , is oherent with our setting and may beuseful when extending our framework to additives. Nevertheless, in the following,the standard rule for 1 is impliitly added to the aluli. One an de�ne a n-aryfoalized sequent alulus (A is an atomi formula) as in Fig. 3. Sequents ontain adistinguished plae between ` and ; , they are in one of the two following forms:60



Fouquere and Mogbil` ; A?; A; [� (axiom) ` 1; [� (1) ` ; �; A; [� ` ; A?;�; [�` ; �;�; [� (ut): : : ` Ni ; �i; [� : : : ` ; Aj;�j ; [� : : :` ; Ni2I #Ni Nj2J Aj;�1; : : : ;�jIj;�1; : : : ;�jJj; [� (
): : : ` Ni ; [(Ni2I #Ni Nj2J Aj);�i; [� : : : ` ; [(Ni2I #Ni Nj2J Aj); Aj ;�j ; [� : : :` ; [(Ni2I #Ni Nj2J Aj);�1; : : : ;�jIj;�1; : : : ;�jJj; [� ([
)` ; P1; : : : ; PjIj; A?1 ; : : : ; A?jJj;�`Pi2I "Pi Pj2J A?j ; � (P) ` ; P1; : : : ; PjIj; A?1 ; : : : ; A?jJj; [�` ℄(Pi2I "Pi Pj2J A?j ) ; [� (℄ P)Fig. 3. n-ary sequent alulus for nMELLpol (0-ary tensor is 1).` ; � or ` N ; � where N is a negative non atomi formula and � is a multisetof positive formulae or atomi negative formulae. The sequent alulus is designedsuh that, beginning with the distinguished plae empty, searh for proofs onsists ofrepeating the deomposition of a positive formula followed by the deomposition ofnegative formulae (neessarily subformulae of the positive formula just deomposed),until applying axioms. Note that exponential rules are as possible integrated to linearrules to quotient the searh spae (e.g. the axiom rule inludes ([w), ([
) manages([)). The following translation (�)� from MELLu to nMELLpol is suh that if Fis a MELLu formula, `MELLu F is provable i� `nMELLpol F�; is provable:1+ = 1 A+ = A (F1 
 F2)+ = F+1 
 F+2 (!F )+ = #℄F� F+ = #F�otherwiseA?� = A? (F1 P F2)� = F�1 P F�2 (?F )� = "[F+ F� = "F+otherwiseThe �nal step to get modules onsists in �attening nMELLpol formulae. Bipolarmodules were previously obtained by adding atomi formulae between two strata(say from negative to positive): let P1; P2 be positive formulae, N a negative formula,` P1 
 (N P P2) is provable i� ` P1 
 (N P Z?); Z 
 P2 is provable, where Z is afresh (positive) atomi formula. However this priniple annot be fully applied whenexponentials our: try to �atten the (provable) sequent ` A? P "[(B 
 C); A 
#℄(B? P C?). This an be overome by allowing exponential atomi formulae inthe language. These exponential atomi formulae are noted with ℄ or [ supersripts:Z℄ and Z[ are respetively de�ned as #℄ "Z and "[ #Z?. We then onsider thetranslation (�)Æ: let C be a non-empty ontext (negative or positive), Z is a freshatomi formula C[ "Ni2I �i℄Æ = C[Z?℄Æ; [ZNi2I �i℄ÆC[ "[Ni2I �i℄Æ = C[Z[℄Æ; [[(Z℄Ni2I �i)℄Æotherwise (i.e. empty ontext) P Æ = P;NÆ = #N . We still have if F is a MELLuformula, `MELLu F is provable i� `nMELLpol ;F Æ is provable. We onsider now drawingsof the following kind we all ?-EBM: 61



Fouquere and Mogbil℄[ ℄ ?d

1P! P! 
 
PFig. 4. ?-EBM and proofnets��[℄℄Al;1A0m;1 ��[℄℄Al;kA0m;k[[℄BiPositive and negative poles may now be labelled: a ?-EBM is reusable when [labels its positive part, ℄ labels a promoted variable, brakets mean optional. � labelsan exponential atomi negative onlusion of a ?-EBM and we refer to �-edge in thatase. Roughly, the orrespondene between plaes of exponentials in formulae andlabelled elements is the following one:!(X ( Y ) is drawn with the positive pole labelled [: YX[X (!Y is drawn with a �-edge: ���YXX (?Y is drawn with the negative pole labelled ℄: Y℄XThe type of a ?-EBM generalizes the type given for an EBM (brakets meanoptional): C = [!℄(Ni2I Bi(Pk2K [?℄ (Nl2L Al;kNm2M Z℄m;k)) . Suh a type(lause in logi programming terminology) ould be interpreted as: C is a reusablelause i� ! is expliit. The appliation of a lause is allowed if the Bi are available,then one of the onlusions is �red, a onlusion being a multiset of atomi formulaeAl;k or exponential, i.e. reusable, atomi formulae Z℄m;k. If the ? modality is present,the multiset of onlusions is required to be reusable as a whole: not only theseonlusions annot be used with a linear lause but suh a lause annot use linearhypotheses. For example, onsider the set of lauses f1 ( A 
 B;B (?C; !(A 
C) ( ?g. The orresponding module we get is drawn in Fig.4 on the left. The�gure on the right is the orresponding proof-struture (see [9,12℄ for de�nitionsof proof strutures with boxes, extended here to n-ary onnetives). The traversalof the box without the use of a [-node shows that the sequent is not provable (aderelition should have been applied), i.e. the ?-EBM on the left is not orret.62



Fouquere and Mogbil3.1.2 From ?-EBMs to modules.De�nitions given in setion 2 for EBMs, that is to say omposition and orretnessof modules, annot be straightfully extended to the exponential ase. Obviously,omposition should satisfy identi�ation of variables ourring on links, notiingthat �-edges an only be linked to �-edges. However, ontration needs a speialattention. For the following, we onsider expliit ontration: ?-EBMs with positivenodes labelled [, and �-edges are dupliated if neessary mimiking the property!A (!A 
 A, hene the degree of edges is always 1. The de�nition of ompositiongiven in setion 2 is then adapted onsequently for ?-EBMs labelled [ and �-edges.For example, �-edges are dupliated as follows:?Z and Z gives ?Z
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Abstract

Deduction Graphs are meant to generalise both Gentzen-Prawitz style natural deductions and Fitch style
flag deductions. They have the structure of acyclic directed graphs with boxes. In [2] we have investigated
the deduction graphs for minimal proposition logic. This paper studies the extension with first-order
universal quantification, showing the robustness of the concept of deduction graphs.

Keywords: Natural deduction, universal quantification, cut-elimination.

1 Introduction

In this paper we extend deduction graphs, DGs, of [2], with first-order universal
quantification. In [2] we have presented deduction graphs for minimal propositional
logic (only implication) as a formalism for “natural deduction with sharing”. The
natural deductions become acyclic directed graphs with boxes to delimit the scope
of local assumptions. The boxes are used in the →-introduction rule. Figure 1
presents an example of a deduction graph that represents a deduction of B (node
9) from the hypotheses A→A→B and (A→B)→A (nodes 3 and 7).

The arrow represents (inverse) derivability, so e.g. node 9 (B) is derived from
nodes 6 (A→B) and 8 (A). Similarly node 6 (A→B) is derived from 5 (B) while
discharging the “free” nodes (i.e. cancelling the assumptions) 1 and 2 (A). Deduc-
tion graphs are singled out from a larger set of graph-structures, the so called closed
box directed graphs, cbdg, which basically are labelled directed graphs with boxes,
where a box is a collection of nodes, B. Each box B corresponds to a node, the box
node of B. In a cbdg it is required that two boxes are disjoint or one is contained in
the other; there is only one outgoing edge from a box node and that edge points into
the box itself; apart from the edge from the box node, there are no edges pointing
into a box.
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(7,(A→ B)→ A)

(8,A)

(9,B)

Fig. 1. Deduction graph in the implicational fragment

To make all this precise, we repeat some definitions of [2].

Definition 1.1 A closed box directed graph is a triple 〈X,G, (Bi)i∈I〉 where X is a
set of labels, G is a directed graph where all nodes have a label in X and (Bi)i∈I is a
collection of sets of nodes of G, the boxes. Each box Bi corresponds to a node, the
box node of Bi. Moreover, the boxes (Bi)i∈I should satisfy the following properties.

(i) (Non-overlap) Two boxes are disjoint or one is contained in the other: ∀i, j ∈
I(Bi ∩ Bj = ∅ ∨ Bi ⊂ Bj ∨ Bj ⊂ Bi),

(ii) (box node edge) There is only one outgoing edge from a box node and that
points into the box itself (i.e. to a node in the box),

(iii) (No edges into a box) Apart from the edge from the box node, there are no
edges pointing into a box.

Definition 1.2 Let G be a closed box directed graph. A box-topological ordering
of G is a linear ordering < of the nodes of G, such that for all nodes n0, n1 of G:

(i) If n0 −−> n1, then n1 < n0.

(ii) If n0 is the box node of a box containing n1, then n1 < n0.

Definition 1.3 Let 〈G, (Bi)i∈I〉, be a closed box directed graph and let n0 and n1

be nodes in this graph.

• Node n1 is in scope of n0 if n0 is in all boxes that n1 is in. In a formula:
∀i ∈ I(n1 ∈ Bi ⇒ n0 ∈ Bi). (So the nodes in scope of n0 are the nodes that are
in ‘wider’ boxes.)

• The nodes n0 and n1 are at the same depth, when n0 is in scope of n1, and n1 is
in scope of n0. Node n0 is at a greater depth than n1, when n1 is in scope of n0,
but n0 is not in scope of n1.

• Node n1 is a top-level node if n1 is not contained in any box.
• The free nodes are the top-level nodes that have no outgoing edges.

Originally, boxes were meant to border the scope of a local assumption, but now
we also use boxes to border the scope of a quantifier: When we do a ∀-introduction,
we create a box with box node ∀x.ϕ. To carry this extension through we have
to consider how to deal with the side condition on the ∀-introduction rule, which
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is stated in Gentzen-Prawitz style natural deduction as follows: “the eigenvariable
does not occur free in any of the non-discharged assumptions”. (The eigenvariable is
the quantified variable x in the introduction of ∀x.ϕ.) In DGUs we want to represent
this by a more “local” side condition. A first idea would be to require that there
is no edge pointing out of the box to a formula in which the eigenvariable occurs
free, like usually done in Fitch deductions. (So when we introduce ∀x.ϕ, the box we
create should not have edges pointing out to a node ψ with x ∈ FV(ψ).) However,
this would cause severe problems in the cut-elimination procedure, as the following
graph shows. The ∀-box has been depicted with a dashed line.

��B
B
B
B
B

bb �
�
�
�
�
�
�

�
�
�
�
�
�
�B

B
B
B
B
B
B

B
B

``` ((((

   
   

 

��
�

A
A
A
A

(1, A→P(x)→∀y.Q(y))

(3, A)

(4, P(x)→∀y.Q(y))

(5, ∀y.Q(y))

(2, P(x))

(6, A→∀y.Q(y))

(7, ∀x.S(x)) (8, ∀x.(S(x)→A))

(9, S(x)) (10, S(x)→A)

(11, A)

(12, ∀y.Q(y))

(14, ∀y.Q(y)→P(x))

(13, ∀x.(∀y.Q(y))→P(x))

(15, P(x))

(16, ∀x.P(x))

There is a hidden →-cut in node 12: The implication has been introduced in node
6 and is then immediately eliminated using node 11 to derive node 12. The cut is
hidden because nodes 6 and 12 are not at the same depth. So we first have to do
an incorporation step, moving the box with box node 6 into the box with box node
16. 2

The eigenvariable of the ∀-box is x. If we would do an incorporation directly,
there would be arrows from inside the ∀-box to the nodes 1 and 2 outside the box,
in which x occurs free. This is forbidden. We therefore first have to do a renaming
of the eigenvariable, like shown in Fig. 2.
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(13, ∀x.(∀y.Q(y))→P(x))

(15, P(z))

(16, ∀z.P(z))

Fig. 2. Renaming of eigenvariable.

This renaming is not so trivial because it not only involves nodes inside the box
but also the x in node 16. But when we rename x in node 16, we also have to
rename it in nodes that refer to 16, and propagate that through the graph. This
could thus involve any node of G, eventually even nodes 1 and 2. Renaming is hence
not just complicated, but it might a priori not even solve the problem.

As this looks like Gentzen-Prawitz style natural deduction, why doesn’t the

2 This is explained in detail in [2]. We now just remark that eliminating the cut directly includes adding
an edge from 3 to 11. This does not yield a DG because the edge would be pointing into box, so we have to
incorporate first.
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necessity to rename variables occur in that formalism? There is no sharing in the
example graph, so we can present the deduction faithfully as a tree in the following
way (where [A]1 denotes the discharging (or cancelling) of hypothesis A at the the
application of the logical rule referred to by 1):

P(x)

[A]1 A→P(x)→∀y.Q(y)

P(x)→∀y.Q(y)

∀y.Q(y)
1

A→∀y.Q(y)

∀x.S(x)

S(x)

∀x.(S(x)→A)

S(x)→A

A

∀y.Q(y)

∀x.(∀y.Q(y)→P(x))

∀y.Q(y)→P(x)

P(x)

∀x.P(x)

1

But this is not a correct Gentzen-Prawitz style natural deduction, as the variable
x occurs free in the non-discharged assumption A→P (x)→∀y.Q(y) when it gets
bound in the ∀-I rule introducing ∀x.P (x). Apparently the ∀-introduction rule in
Gentzen-Prawitz style natural deduction is strict enough to prevent the need for
renaming variables during ∀-cut-elimination.

Our solution is to use two sets of variables: free variables, Var and bound vari-
ables BVar and to rename the free variable with a fresh bound variable when doing
the ∀-introduction. Furthermore, we require that the eigenvariable is unique for
that box (i.e. it does not occur anywhere outside the box). A further discussion of
the choice of syntax can be found in Section 3.1.

In Section 2 we give the definition of deduction graphs with universal quantifi-
cation, called DGUs, starting from definitions for terms and formulas of first-order
predicate logic. The process of cut-elimination is discussed in Section 3, followed
by strong normalisation in Section 4. Finally, Section 5 compares DGUs with devel-
opments in proof nets.

2 Definition

Different from the language of first-order predicate logic for Gentzen-Prawitz style
natural deduction [1,6], we define the language Pred of first-order predicate logic
with universal quantification and equality for deduction graphs to have two kinds
of variables. The first kind, Var denoted by u, v, w, . . ., are meant to be used as free
variables. The second kind, BVar, denoted by x, y, z, . . ., will only be used bound.
The same idea is often used for the language of first-order predicate logic for Fitch
style flag deductions [7].

We now define the terms, basic formulas, formulas and axioms of Pred.

Definition 2.1 (i) The set of terms of Pred, Term is defined as follows.

Term ::= Var | F(Term, . . . ,Term)

where F is a function symbol with a fixed arity and the length of the sequence
of terms following it should be equal to the arity of F.
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(ii) The set of formulas of Pred, Form, is defined as follows.

Form ::= R(Term, . . . ,Term) | Term = Term | Form→Form | ∀x.Form[x/u]

where R is a relation symbol with a fixed arity and the length of the sequence
of terms following it should be equal to the arity of R; x ranges over BVar and
u over Var. So, in the ∀x.Form[x/u] case, when we introduce the ∀, we also
replace a free variable (u) by a bound one (x).

We adopt the following convention for the brackets in formula: we omit brackets
around →-formulas by letting → associate to the right; ∀ binds stronger than →;
outer brackets are not written, nor are any other brackets that do not contribute
to our understanding of the formula.

So, for example, ∀x.ϕ→ψ→ξ ≡ ((∀x.ϕ)→(ψ→ξ)). Note, however, that
∀x.P(x)→Q(x) can formally only be understood as (∀x.(P(x)→Q(x))), because
((∀x.P(x))→Q(x)) is not a formula. In these cases we will write the inner brackets
under the quantifier explicitly anyway, for the convention would otherwise lead us
to misinterpret the formula.

Because Pred deviates from the language of first-order predicate logic for
Gentzen-Prawitz natural deduction, this also means that the ∀-introduction for
deduction graphs cannot be similar to the ∀-introduction in the Gentzen-Prawitz
formalism.

The ∀-introduction in Gentzen-Prawitz style natural deduction is as follows:

D

ϕ

∀x.ϕ

Where x may not be free in the non-discharged assumptions of D. This means that
x might be free in ϕ, although it is bound in ∀x.ϕ.

In deduction graphs we will introduce a fresh (bound) variable in the ∀-
introduction step. The advantage is then, that a deduction graph is still well-
formed, when we rename only free variables. We will use this later, in the process
of cut-elimination.

Definition 2.2 The collection of deduction graphs for first-order universal quan-
tification, DGU is the set of closed box directed graphs over IN × Pred inductively
defined as follows:

Axiom A single node (n,A) is a deduction graph,

→-E If G is a deduction graph containing two nodes (n,A→B) and (m,A) at the top
level, then the graph G′ := G with
· a new node (p,B) at the top level
· an edge (p,B)−−> (n,A→B),
· an edge (p,B)−−> (m,A),
is a deduction graph.

→-I If G is a deduction graph containing a node (j, B) with no ingoing edges and a
finite set of free nodes with label A, (n1, A), . . . , (nk, A), all at the top level, then

70



Geuvers, Loeb

the graph G′ := G with
· A box B with box node (n,A→B), containing the nodes (j, B) and (n1, A),
. . . , (nk, A) and no other nodes that were free in G,

· An edge from the box node (n,A→B) to (j, B)
is a deduction graph under the proviso that it is a closed box directed graph.

Repeat If G is a deduction graph containing a node (n,A) at the top level, the graph
G′ := G with
· a new node (m,A) at the top level,
· an edge (m,A)−−> (n,A)
is a deduction graph.

∀-I If G is a DGU containing a node (j, ϕ) with no ingoing edges at top-level for some
formula ϕ of Pred, then the graph G′ := G with
· A box B with box node (n,∀x.ϕ[x/u]) , not containing any nodes without

outgoing edges, where we call u the eigenvariable of B if u occurs in ϕ,
· An edge from the box node (n,∀x.ϕ[x/u]) to (j, ϕ)
is a DGU under the proviso that: G′ is a well-formed closed box directed graph
and u does not occur in the label of any node that is not in B.

∀-E If G is a DGU with a node (n,∀x.ϕ) at top-level for some formula ϕ of Pred, then
the graph G′ := G with
· a node (p, ϕ[t/x]) where none of the variables of t is the eigenvariable of any

box of G,
· an edge from (p, ϕ[t/x]) to (n,∀x.ϕ)
is a DGU.

JoinU If G and G′ are two DGUs then G′′ = G ∪ G′ is a DGU under proviso that the
eigenvariables of G and the eigenvariables of G′ are disjoint.

So the rules for DGU are the ones for DG with the ∀-I and ∀-E rules added and
the Join rule slightly modified.

Example 2.3 Let P and Q be unary predicate symbols of Pred. Figure 3 shows an
example of an DGU. The graph is constructed by adding the nodes in their numerical
order: first nodes 1 and 2 by Axiom, then 3 and 4 by ∀-E, then 5 by →-E, then 6
by ∀-I and then 7 by →-I.

Lemma 2.4 Let G be a DGU. Then for every variable u:
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Fig. 3. An example of a DGU.
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(i) u occurs as eigenvariable of a box of G at most once;

(ii) If u is an eigenvariable of a box B of G, it does not occur in a label of a node
outside B.

We formulate a criterion to check relatively easily whether a given closed box
directed graph is a DGU (Lemma 2.5). As an important notion for DGUs is the
eigenvariable of a box, we need a similar notion for general closed box directed
graphs. So, we call a variable u a box-variable of B, if u does not occur in the label
of the box node of B, but it does occur in the label of the node that the box node
points to. Remark that for DGUs the notion of eigenvariable and the notion of box-
variable coincides. We also recall from [2] the notion of a box-topological ordering :
> is a box-topological ordering of G if it is a linear ordering of the nodes of G, such
that n−−> m⇒ n > m and if B has box node n and m ∈ B, then n > m.

Lemma 2.5 A finite closed box directed graph G is a DGU if and only if the following
hold

(i) If u is a box-variable of a box B of G, it does not occur in a label of a node
outside B.

(ii) There is a box-topological ordering > of G.

(iii) Every node n of G is of one of the following six types:
A It has no outgoing edges.

→-E It has label B and has exactly two outgoing edges: one to a node (m,A→B)
and one to a node (p,A), both within the scope of n.

→-I It is a box node of a box B with label A→B and has exactly one outgoing edge,
which is to a node (j, B) inside the box B (and not in any deeper boxes) with
no other ingoing edges. All nodes inside the box without outgoing edges have
label A.

R It has label A and has exactly one outgoing edge, which is to a node (m,A)
that is within the scope of n.

∀-E It has label ϕ[t/x] for some formula ϕ, some term t and some variable x, and
n has exactly one outgoing edge to a node (m,∀x.ϕ) within the scope of n.

∀-I It is a box node of a box B with label ∀x.ϕ for some variable x and some
formula ϕ, and has exactly one outgoing edge, which is to a node (j, ϕ[u/x])
inside the box B (and not in any deeper boxes). Node (j, ϕ[u/x]) has no other
ingoing edges and there are no nodes without outgoing edges in B.

Proof. ⇒:By induction on the definition of deduction graph. ⇐:By induction on
the number of nodes of G, distinguishing according to the type of (one of) the
maximal node (in the box-topological ordering) of G. 2

3 Cut-elimination

We now also encounter a “detour” in a proof, when a ∀-introduction is immediately
followed by a ∀-elimination. Definition 3.3 describes the elimination of a safe ∀-cut.

Not all ∀-cuts are safe, so it might be necessary to apply some transformations
to make them safe. These transformations are the same ones as for →-cuts: repeat-
elimination, unsharing, and incorporation. The only difference with the transfor-
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mations on DGs is, that unsharing has become a little more involved, because of the
eigenvariable requirement.

Definition 3.1 A ∀-cut in a DGU G is a subgraph of G consisting of:

• a box node (n,∀x.ϕ),
• a node (p, ϕ[t/x]),
• a sequence of R-nodes (s0,∀x.ϕ), . . . , (si,∀x.ϕ),
• wdges (p, ϕ[t/x])−−> (si,∀x.ϕ)−−> . . .−−> (s0,∀x.ϕ)−−> (n,∀x.ϕ).

We call the node (n,∀x.ϕ) the major premiss and we call the node (p, ϕ[t/x]) the
conclusion.

Similarly, in a →-cut, we call (n,A→B) the major premiss and the node (p,B)
the conclusion.

Definition 3.2 Let B be the box associated to box node n. A (∀/→)-cut in a DGU
G is safe if the following requirements hold:

• there is an edge from the conclusion to the major premiss and that is the only
edge to the major premiss;

• the major premiss and the conclusion are at the same depth (relative to the box
structure);

Definition 3.3 The process of eliminating a safe ∀-cut is the following operation
on DGUs (see Figure 4):

• change the labels ψ of the nodes in the box of n, to ψ[t/u];
• remove the box and box node (n,∀x.ϕ[x/u]);
• add an edge from (p, ϕ[t/x]) to (j, ϕ[t/u]) (the node that n pointed to).

#
"

 
!

#
"

 
!B

(n, ∀x.ϕ[x/u])

(p, ϕ[x/u][t/x]) (p, ϕ[x/u][t/x])

(j, ϕ) (j, ϕ[t/u])

B[t/u]

Fig. 4. Schematic presentation of a safe ∀-cut elimination.

Lemma 3.4 If G is a DGU with safe ∀-cut c and G′ is obtained from G by eliminating
c, then G′ is also a DGU.

Proof. By Lemma 2.5. 2

We can generalise repeat-elimination, unsharing, and incorporation without
much ado. Because after unsharing we still want every eigenvariable to occur just
once, this step now includes the renaming of eigenvariables of copied boxes.
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Definition 3.5 Let G be a DGU with a cut with major premiss (n, ϕ) and conclusion
(p, ψ). Suppose G contains a node (n0, ϕ), an R-node (n1, ϕ) and edges n1 −−> n0

and p−−> n1. The repeat-elimination at n0, n1, p is obtained by:

• When an edge points to n1, redirect it to n0;
• Remove n1.

Lemma 3.6 For G a DGU with a cut with major premiss (n, ϕ) and conclusion
(p, ψ). Suppose G contains a node (n0, ϕ), an R-node (n1, ϕ) and edges n1 −−> n0

and p−−> n1, the repeat-elimination of at n0, n1, p is also a DGU.

Proof. By Lemma 2.5. 2

Definition 3.7 Let G be a DGU with a ∀-box B with eigenvariable u. Let v be a
fresh variable. Then the renaming of u by v is the graph G in which the labels ψ
of the nodes of B have been replaced by ψ[v/u].

Lemma 3.8 Let G be a DGU with a ∀-box B with eigenvariable u. Let v be a fresh
variable. Then the renaming of u by v is a DGU.

Proof. By Lemma 2.5. 2

Definition 3.9 Let G be a DGU with a cut c with major premiss n. Suppose n is
a box node of a box B and has k ≥ 2 ingoing edges, from p1, . . . , pk. Then the
unsharing of G at nodes n, p1, . . . pn is obtained by:

• making a box B′ that contains a copy of all nodes and edges of B,
• copy all outgoing edges of B to B′ (thus if we had q −−> m with q ∈ B, q′ ∈ B′

and m /∈ B, then we add q′ −−> m, where q′ is the copy of q ∈ B′,
• letting p2, . . . , pk point to n′ (the box node of B′) instead of n;
• renaming the eigenvariable of B′ and of all boxes contained in B′.

Lemma 3.10 Let G be a DGU with a cut c with major premiss n. Suppose n is a box
node of a box B and has k ≥ 2 ingoing edges, from p1, . . . , pk. Then the unsharing
of G at nodes n, p1, . . . pn is a DGU.

Proof. By Lemma 2.5. 2

Definition 3.11
We have a depth-conflict in the DGU G, if G contains a cut with major premiss n
and conclusion p at a greater depth, such that there is an arrow from p to n and
that is the only arrow to n. In that case the incorporation of G at n, p is obtained
by moving Bn, i.e. the box of n, into the box at the lowest depth that includes p
but excludes n.

Lemma 3.12 Suppose G is a DGU with a depth conflict. Then the incorporation at
the major premiss and the conclusion is a DGU.

Proof. By case analysis on the incorporating box. Then by Lemma 2.5. 2

Definition 3.13 Given a DGU G with a cut c, the process of →/∀-cut elimination
is the following;
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(i) (Repeat elimination) As long as there is no edge from the conclusion to the
major premiss, perform the appropriate repeat-elimination as described in Def-
inition 3.5;

(ii) (Unsharing) If there is an edge from the conclusion to the major premiss,
but this is not the only edge to the major premiss, perform an appropriate
unsharing step, as defined in Definition 3.9;

(iii) (Incorporation) As long as the conclusion is at a greater depth than the major
premiss, perform the appropriate incorporation step, as described in Definition
3.11.

(iv) (Eliminating a safe cut) If c is safe, perform either the safe →-cut-elimination
step, or the safe ∀-cut-elimination step, as defined in Definition 3.3.

3.1 Discussion

We have made some choices in the definition of DGUs that facilitate the process of
cut-elimination. Except for the choice of the language, which has already been
discussed in the Introduction, these are:

(i) We deviate from the side-condition for the ∀-introduction rule as normally used
in Fitch-style flag deduction, as discussed in the Introduction.

(ii) We require the uniqueness of the eigenvariables.

Suppose we would adopt the Fitch-style side-condition for the ∀-introduction
rule, then this results in having to do an additional renaming in the incorporation
step in some cases.

If we would abandon the requirement of unique eigenvariables and adopt the
Fitch-style side-condition, this would move renaming from the unsharing step to
the incorporation step.

4 Strong Normalisation

To obtain strong normalisation for cut-elimination on DGUs, we extend the λ-calculus
with tupling as defined in [2], and prove strong normalisation for it. Then a reduc-
tion preserving translation from DGUs to this calculus is defined.

The strong normalisation result we thus get is relatively weak: It is assumed
that first one cut is made safe and is eliminated, before handling another cut.

For Gentzen-Prawitz natural deduction, strong normalisation for cut-elimination
can be proven by (1) defining a →-cut preserving translation to the →-fragment and
(2) showing that an infinite ∀-cut reduction is impossible. That might also work for
the DGU case, but (2) is now problematic, because a ∀-cut contraction may involve
unsharing and then other ∀-cuts may be copied. We therefore opt for a direct proof
of strong normalisation for cut-elimination for DGUs.

Definition 4.1 The typed expressions T〈〉 and types of the λ→〈〉-calculus for first
order predicate logic with universal quantification are defined as follows.

(i) For ϕ ∈ Form, all variables xϕ are of type ϕ.

(ii) If T is of type ϕ→ψ and S is of type ϕ, (TS) is of type ψ.
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(iii) If T is of type ϕ, then λxψ.T is of type ψ→ϕ.

(iv) If T is of type ∀x.ϕ and t is a term, then (Tt) is of type ϕ[t/x].

(v) If T is of type ϕ, then λy.T [u := y] is of type ∀y.ϕ[y/u].

(vi) If T1, . . . , Tn are of types ϕ1, . . . ϕn respectively,
〈T1, . . . , Tn〉 is an expression of type ϕ1.

Definition 4.2 The reduction rules for the expressions are as follows:

(λxσ.M)N −−>β̄ 〈M,N〉 if x /∈ FV(M)

(λxσ.M)N −−>β̄M [x := N ] if x ∈ FV(M)

(λy.M)t−−>β̄M [y := t]

〈M,P1, . . . , Pk〉N −−>β̄ 〈MN,P1, . . . , Pk〉
〈M,P1, . . . , Pk〉t−−>β̄ 〈Mt,P1, . . . , Pk〉
N〈M,P1, . . . , Pk〉 −−>β̄ 〈NM,P1, . . . Pk〉

〈. . . , 〈M,P1, . . . , Pk〉, . . .〉 −−>β̄ 〈. . . ,M, P1, . . . , Pk, . . .〉

As can be observed from the typing and the reduction rules, the N1, . . . , Nk in
〈M,N1, . . . , Nk〉 act as a kind of ‘garbage’. The order of the terms in N1, . . . , Nk

is irrelevant and we therefore consider terms modulo permutation of these vectors,
which we will write as ≡p.

Definition 4.3 Given a deduction graph G and a node n in G, we define the λ-term
〈[G,n]〉 as follows (by induction on the number of nodes of G).

A If (n,A) has no outgoing edges, 〈[G,n]〉 := xAn ,

→E If (n,B)−−> (m,A→B), and (n,B)−−> (p,A), define 〈[G,n]〉 := 〈[G,m]〉 〈[G, p]〉.
R If (n,A)−−> (m,A), define 〈[G,n]〉 := 〈[G,m]〉
→I If (n,A→B) is a box node with (n,A→B) −−> (j, B), the free nodes of the

box are n1, . . . , nk and the nodes without incoming edges inside the box are
m1, . . . ,mp, then

〈[G,n]〉 := λxA.〈〈[G, j]〉, 〈[G,m1]〉, . . . , 〈[G,mp]〉〉[xn1 := x, . . . , xnk
:= x].

∀E If (n, ϕ[t/y])−−> (p,∀y.ϕ), define 〈[G,n]〉 := 〈[G, p]〉t.
∀I If (n,∀y.ϕ[y/u]) −−> (j, ϕ) and the nodes without incoming edges are

m1, . . . ,mp, then

〈[G,n]〉 := λy.〈〈[G, j]〉, 〈[G,m1]〉, . . . , 〈[G,mp]〉〉[u := y]

The interpretation of the deduction graph G, 〈[G]〉, is defined as 〈〈[G, r1]〉, . . .,
〈[G, rl]〉〉, where r1, . . . , rl are the top-level nodes without incoming edges in the
deduction graph G.

Definition 4.4 A λ→〈〉 context is given by the following abstract syntax K[−].

K[−] := [−] | T〈〉K[−] | K[−]T〈〉
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So a λ→〈〉 context is a λ→〈〉-term consisting only of applications (no abstrac-
tions) with one open place. The following is immediate by induction on K[−].

Lemma 4.5 For all λ→〈〉 contexts K[−] and λ→〈〉-terms M,N1, . . . , Nk

K[〈M,N1, . . . , Nk〉]−−>−−>β̄〈K[M ], N1, . . . , Nk〉.

Lemma 4.6 (∀ Cut-elimination is β̄-reduction in λ→〈〉)
If G′ is obtained from G by a ∀-cut-elimination, then 〈[G]〉 −−>−−>+

β̄
〈[G′]〉.

Proof. By induction on the structure of G. 2

Theorem 4.7 The process of cut-elimination is terminating for DGUs.

Proof. Suppose it is not terminating. Then by Lemma 4.6, we have an infinite
reduction in λ→〈〉, but λ→〈〉 is strongly normalising (see [2]). 2

5 Connection with Proof Nets

In [3] we have seen a correspondence between a variant of DGs and proof nets of
MELL. We remarked that there are some superficial similarities between the two:
both have boxes and both enable sharing (contraction). Using this, we were able
to define a translation from these deduction graphs to proof nets that preserves
reduction.

In the way they handle quantification proof nets also seem fairly close to de-
duction graphs. In the early days [4] boxes were used to delimit the scope of a
quantification. Later (see for example [8]), this was put aside and replaced by
global correctness criteria. It seems plausible that in deduction graphs too we could
omit boxes for this use. We have not done this as deduction graphs serve another
purpose than proof nets, and leaving out the ∀-boxes would make the deduction
graphs less perspicuous. This discrepancy in the handling of quantification does
not seem to jeopardise the aim to extend the translation given in [3]: Because
(∀x.ϕ)∗ =!(∀x.ϕ∗) (where ()∗ is Girard’s translation), it is the exponential box that
should act like the ∀-boxes in deduction graphs anyway.

The main difficulty in both proof nets and deduction graphs is that during cut-
elimination it is in some cases necessary to do a renaming. In anticipation to this,
we have changed the ∀-introduction rule for deduction graphs and we have used two
kinds of variables: one kind for bound uses, and one for free uses (see also [7]).

In [5], Girard discusses proof nets of MLL with quantifiers. Note that, as these
proof nets do not include the exponential rules, this results in a simpler system.
His approach is similar to ours. He replaces some free variables by constants, which
reminds of our solution with two kinds of variables. He also insists on uniqueness
of the eigenvariable. About renaming he says:

In practice, it would be crazy to rename bound variables (. . .).

Luckily, as there is no copying going on in the cut-elimination of MLL, renaming is
nowhere necessary.

This changes when we shift our attention to MELL proof nets with quantifica-
tion. The most complete study of this can be found in [8], and although it handles
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only second order quantification explicitly, it is generally assumed [4] [8], that first
order quantifiers do not provide additional difficulties.

Here another approach has been taken. Instead of discriminating between dif-
ferent kinds of variables, an equivalence relation on the formulas is defined, making
two formulas the same when one can be obtained from the other by renaming bound
variables. Deviating from [8], this line might be pursued as follows: 3

(i) Define formulas;

(ii) Define proof-structures;

(iii) Define the equivalence relation on formulas;

(iv) Extend the equivalence relation on proof-structures.

Once this has been done, it needs to be shown that after cut-elimination on a
proof-net, one gets a proof-structure that is equivalent to a proof net.

This plan has two difficulties, the first being the exact definition of equivalence
relation on proof structures. Just saying that two proof structures are equivalent,
when they have the same structure and when formulas at the same places are
equivalent, would not suffice. In addition, it should also consider renaming of free
variables in formulas that will get bound somewhere else in the structure.

Secondly, it could be rather complicated to find an equivalent proof-net after cut-
elimination. This problem is very similar to the ones discussed in the Introduction.
It is not at all clear how this renaming can be done for example after c-b-reduction
(copying a box).

Another way out would be to extend the idea used in [5], similarly to deduction
graphs: Change the ∀-rule and work with two kinds of variables. This might very
well work.

Whence proof nets with quantifiers are defined properly and completely, it seems
likely that we can define a reduction-preserving translation from DGUs to them.
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Paris VII- Denis-Diderot, 2000.

79



TERMGRAPH 2007

An Algebra for Directed Bigraphs ?

Davide Grohmanna,1 Marino Miculana,2

a Department of Mathematics and Computer Science, University of Udine, Italy

Abstract

In this paper, we study the algebraic structure of directed bigraphs, a bigraphical model of computations
with locations, connections and resources previously introduced by the authors as a unifying generalization
of other variants of bigraphs. We give a sound and complete axiomatization of the (pre)category of directed
bigraphs. Moreover, we use this axiomatization for encoding the λ-calculus, both in call-by-name and
call-by-value variants, showing in this way the expressive power of directed bigraphs.

Keywords: Bigraphical models, categorical meta-models for Concurrency, λ-calculus.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical meta-model of com-
putation introduced by Milner [7,8] in which both locality and connectivity are
central notions. The key structure of BRSs are bigraphs, which are composed by
two orthogonal graph structures: a hierarchical place graph describing locations,
and a link (hyper-)graph describing connections. The reaction rules, representing
the dynamics of the BRS, may change both these structures. Several process cal-
culi for Concurrency can be represented in bigraphs, such as CCS, Ambients, and
(using a mild generalization called binding bigraphs), also the π-calculus and the
λ-calculus. An important feature of bigraphs is that they support a very general
construction, based on the notion of relative pushout (RPO) [5], which allows to
turn reaction rules into labelled transition systems.

However, Milner’s definition of bigraphs is not the only possible one. Sassone
and Sobociński have given in [11] an alternative definition, derived from a general
categorical construction, the “input-linear cospan” over a particular 2-category of
place-link graphs. Also this variant enjoys a general construction of RPOs. Inter-
estingly, Milner’s and Sassone-Sobociński’s variants do not coincide; in fact, these
two categories and their respective RPO constructions do not generalize each other.
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In previous work [4,3], we have presented directed bigraphs, a generalization of
both these kinds of bigraphs. Intuitively, the idea of directed bigraphs is to notice
that names are not resources on their own, but only a way for denoting (abstract)
resources (i.e., edges). A system can “ask” for external resources thorugh the names
on its interfaces. Thus, we can identify a “resource request flow” starting from
control ports, going through names and terminating in edges. This information
is represented in the new notion of directed link graph, which replaces the previous
notion of link graphs. We have given RPO constructions for this model, generalizing
and unifying the constructions independently given by Jensen-Milner and Sassone-
Sobociński in their respective variants. Moreover, the very same construction can
be used for calculating relative pullbacks as well.

In this paper, we continue this line of investigation. We study the algebraic
structure of directed bigraphs, giving a sound and complete axiomatization of this
(pre)category. Moreover, we use this axiomatization for encoding the λ-calculus,
both in call-by-name and call-by-value variants. Notably, we do not need to in-
troduce further extensions (such as binding signatures) to this end; thus, directed
bigraphs turn out to be more expressive than the two variants previously proposed.

Synopsis In Section 2 we briefly recall the main definitions about the precategory
′DBig of directed bigraphs, and the category DBig of abstract directed bigraphs. In
Section 3 we analyze the algebraic structure of the precategory ′DBig; this analysis
is then carried on to the category DBig in Section 4. In Section 5 we put directed
bigraphs at work, giving the encodings of λ-calculus. Conclusions are in Section 6.

2 Directed bigraphs

In this section we recall the definition and some properties of directed bigraphs; for
details, we refer to [4,3]. Following Milner’s approach, we work in precategories; see
[6, §3] for an introduction to the theory of supported monoidal precategories. 3

Let K be a given signature of controls, and ar : K → ω the arity function.

Definition 2.1 A polarized interface X is a pair of disjoint sets of names X =
(X−, X+); the two components are called downward and upward faces, respectively.

A directed link graph A : X → Y is A = (V,E, ctrl, link) where X and Y

are the inner and outer interfaces, V is the set of nodes, E is the set of edges,
ctrl : V → K is the control map, and link : Pnt(A) → Lnk(A) is the link map,
where the ports, the points and the links of A are defined as follows:

Prt(A),
∑
v∈V

ar(ctrl(v)) Pnt(A) , X+ ] Y − ] Prt(A) Lnk(A) , X− ] Y + ] E

The link map cannot connect downward and upward names of the same interface,
i.e., the following condition must hold: (link(X+) ∩X−) ∪ (link(Y −) ∩ Y +) = ∅.

Directed link graphs are graphically depicted much like ordinary link graphs,
with the difference that edges are explicit objects and points and names are asso-
ciated to edges (or other names) by (simple) directed arcs. This notation makes

3 We prefer precategories to 2-categories, because their concreteness allows for more direct definitions.
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explicit the “resource request flow”: ports and names in the interfaces can be asso-
ciated either to locally defined resources (i.e., a local edge) or to resources available
from outside the system (i.e., via an outward name).

Definition 2.2 (′DLG) The precategory of directed link graphs has polarized in-
terfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1),
the composition A1 ◦A0 : X0 → X2 is defined when the two link graphs have disjoint
nodes and edges. In this case, A1 ◦ A0 , (V,E, ctrl, link), where V , V0 ] V1,
ctrl , ctrl0]ctrl1, E , E0]E1 and link : X+

0 ]X−
2 ]P → E]X−

0 ]X+
2 is defined

as follows (where P = Prt(A0) ] Prt(A1)):

link(p) ,


link0(p) if p ∈ X+

0 ] Prt(A0) and link0(p) ∈ E0 ]X−
0

link1(x) if p ∈ X+
0 ] Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2 ] Prt(A1) and link1(p) ∈ E1 ]X+

2

link0(x) if p ∈ X−
2 ] Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX , (∅, ∅, ∅K, IdX−]X+) : X → X.

Definition 2.3 The support of A = (V,E, ctrl, link) is the set |A| , V ⊕ E.

Definition 2.4 (idle, lean, open, closed, peer) Let A : X → Y be a link graph.
A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e., l 6∈

link(Pnt(A))). The link graph A is lean if there are no idle links.
A link l is open if it is an inner downward name or an outer upward name (i.e.,

l ∈ X− ∪ Y +); it is closed if it is an edge.
A point p is open if link(p) is an open link; otherwise it is closed. Two points

p1, p2 are peer if they are mapped to the same link, that is link(p1) = link(p2).

Proposition 2.5 A link graph A : X → Y is epi iff there are no peer names in Y −

and no idle names in Y +. Dually, A is mono iff there are no idle names in X−

and no peer names in X+.
A is an isomorphism iff it has no nodes, no edges, and its link map can be

decomposed in two bijections link+ : X+ → Y +, link− : Y − → X−.

Definition 2.6 The tensor product ⊗ in ′DLG is defined as follows. Given two
objects X, Y , if these are pairwise disjoint then X ⊗ Y , (X− ] Y −, X+ ] Y +).
Given two link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Yi (i = 0, 1), if the tensor
products of the interfaces are defined and the sets of nodes and edges are pairwise
disjoint then the tensor product A0⊗A1 : X0⊗X1 → Y0⊗Y1 is defined as A0⊗A1 ,
(V0 ] V1, E0 ] E1, ctrl0 ] ctrl1, link0 ] link1).

Finally, we can define the directed bigraphs as the composition of standard place
graphs (see [6, §7] for definitions) and directed link graphs.

Definition 2.7 A (bigraphical) interface I is composed by a width (a finite ordinal,
denoted by width(I)) and by a polarized interface of link graphs (i.e., a pair of finite
sets of names). A directed bigraph with signature K is G = (V,E, ctrl, prnt, link) :
I → J , where I = 〈m,X〉 and J = 〈n, Y 〉 are its inner and outer interfaces respec-
tively; V and E are the sets of nodes and edges respectively, and prnt, ctrl and link
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are the parent, control and link maps, such that GP , (V, ctrl, prnt) : m → n is a
place graph and GL , (V,E, ctrl, link) : X → Y is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP , GL〉. In this notation,
a place graph and a (directed) link graph can be put together iff they have the same
sets of nodes and edges.

Definition 2.8 (′DBig) The precategory ′DBig of directed bigraph with signature
K has interfaces I = 〈m,X〉 as objects and directed bigraphs G = 〈GP , GL〉 : I → J

as morphisms. If H : J → K is another directed bigraph with sets of nodes and edges
disjoint from V and E respectively, then their composition is defined by composing
their components, i.e.: H ◦G , 〈HP ◦GP ,HL ◦GL〉 : I → K..

The identity directed bigraph of I = 〈m,X〉 is 〈idm, IdX−]X+〉 : I → I.

Proposition 2.9 A directed bigraph G in ′DBig is epi (respectively mono) iff its
two components GP and GL are epi (respectively mono).

The isomorphisms in ′DBig are all the combinations ι = 〈ιP , ιL〉 of an isomor-
phism in ′PLG and an isomorphism in ′DLG.

Definition 2.10 The tensor product ⊗ in ′DBig is defined as follows. Given
I = 〈m,X〉 and J = 〈n, Y 〉, where X and Y are pairwise disjoint, then 〈m,X〉 ⊗
〈n, Y 〉 , 〈m + n, (X− ] Y −, X+ ] Y +)〉.

The tensor product of Gi : Ii → Ji is defined as G0⊗G1 , 〈GP
0 ⊗GP

1 , GL
0 ⊗GL

1 〉 :
I0 ⊗ I1 → J0 ⊗ J1, when the tensor products of the interfaces are defined and the
sets of nodes and edges are pairwise disjoint.

Remarkably, directed link graphs (and bigraphs) have relative pushouts (RPOs)
and pullbacks (RPBs), which can be obtained by a general construction, subsuming
both Milner’s and Sassone-Sobociński’s variants. We refer the reader to [4,3].

Actually, in many situations we do not want to distinguish bigraphs differing
only on the identity of nodes and edges. To this end, we introduce the category
DBig of abstract directed bigraphs. The category DBig is constructed from ′DBig

forgetting the identity of nodes and edges and any idle edge. More precisely, abstract
bigraphs are concrete bigraphs taken up-to an equivalence m (see [6] for details).

Definition 2.11 (abstract directed bigraphs) Two concrete directed bigraphs
G and H are lean-support equivalent, written G m H, if they are support equivalent
after removing any idle edges.

The category DBig of abstract directed bigraphs has the same objects as ′DBig,
and its arrows are lean-support equivalence classes of directed bigraphs. We denote
by A : ′DBig → DBig the associated quotient functor.

We remark that DBig is a category (and not only a precategory); moreover, A
enjoys several important properties which we omit here due to lack of space; see [6].

3 Algebraic structure of ′DBig

We begin this section introducing some useful notations.

Remark 3.1 An interface 〈0, (X−, X+)〉 is abbreviated as (X−, X+); a singleton
set {x} as x; and 〈m, (∅, ∅)〉 as m. The interfaces (∅, ∅) and 0 denote the same
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interface, the origin ε. Hence the identity idε can be expressed as ε, (∅, ∅) or 0.
A bigraph A : (∅, X+) → (∅, Y +) is defined by a (not necessarily surjective)

function σ : X+ → Y +, called substitution, if it has no nodes and no edges and
the link map is σ; analogously a bigraph A : (X−, ∅) → (Y −, ∅) is defined by a (not
necessarily surjective) function δ : Y − → X−, called fusion, if it has no nodes and
no edges and the link map is δ. With abuse of notation, we write σ and δ to mean
their corresponding bigraphs.

Let ~x, ~y be two vectors of the same length; we write (y0/x0, y1/x1, . . . ) or M~y
~x,

where all the xi are distinct, for the surjective map xi 7→ yi; similarly, we write
(y0/x0, y1/x1, . . . ) or O~y

~x, where all yi are distinct, for the surjective map yi 7→ xi.
We denote by MX : (∅, ∅) → (∅, X) the bigraph defined by the empty substitution

σ : ∅ → X, in the same way we denote OX : (X, ∅) → (∅, ∅) for the bigraph defined
by the empty fusion δ : ∅ → X.

Note that each substitution σ can be expressed in a unique way as σ = τ ⊗ MX ,
where τ is a surjective substitution; while each fusion δ can be expressed in a unique
way as δ = ζ ⊗OX , where ζ is a surjective fusion. We denote the renamings by α,
i.e. the bijective substitution or bijective fusion.

Finally, we introduce the closure bigraphs. The closure H
N

x
y : (∅, y) → (x, ∅) has

no nodes, a unique edge e and the link map is link(x) = e = link(y). Two other
types of closures are obtained by composing the closure H

N
x
y and Mx or Oy respectively:

• the up-closure Ny : (∅, y) → (∅, ∅) has no nodes, one edge e and link(y) = e;
• the down-closure Hx : (∅, ∅) → (x, ∅) has no nodes, one edge e and link(x) = e.

Definition 3.2 (wirings) A wiring is a bigraph whose interfaces have zero width
(and hence has no nodes). The wirings ω are generated by the composition or tensor
product of three base elements: the substitutions σ : (∅, X+) → (∅, Y +); the fusions
δ : (Y −, ∅) → (X−, ∅); and the closures H

N
x
y : (∅, y) → (x, ∅).

Definition 3.3 (prime bigraph) An interface is prime if it has width equal to 1.
Often we abbreviate a prime interface 〈1, (X−, X+)〉 with 〈(X−, X+)〉, in particular
〈(∅, ∅)〉 = 1. A prime bigraph P : 〈m, (Y −, ∅)〉 → 〈(∅, X+)〉 has no upward inner
names and no downward outer names, and has a prime outer interface.

An important prime bigraph is mergem : m → 1, it has no nodes and it maps m

sites to an unique root. A bigraph G : n → 〈m, (X−, X+)〉 without inner names, it
can be simply converted in a prime bigraph as follows: (mergem ⊗ id(X−,X+)) ◦G.

Definition 3.4 (discrete bigraph) A bigraph D is discrete if it has no edges and
the link map is a bijection. That means all points are open, no pair of points is a
peer and no link is idle.

The discreteness is well-behaved, and preserved by composition and tensor products.
It is easy to see that discrete bigraphs form a monoidal sub-precategory of ′DBig.

Definition 3.5 (ion, atom and molecule) For any non atomic control K with
arity k and a pair of sequence ~x− and ~x+ of distinct names, whose overall length
is k, we define the discrete ion K(v)~x

+

~x− : 〈(~x−, ∅)〉 → 〈(∅, ~x+)〉 as the bigraph with
a unique K-node v, whose ports are separately linked to ~x− or to ~x+. We omit v

when it can be understood.
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For a prime discrete bigraph P with outer names (Y −, Y +) the composite (K~x+

~x−⊗
id(Y −,Y +)) ◦ P is a discrete molecule. If K is atomic, we define the discrete atom
K~x+

~x− : (~x−, ∅) → 〈(∅, ~x+)〉; it resembles an ion, but has no site.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition
of ω⊗id1 with a discrete one. Often we omit · · ·⊗idI in the compositions, when there
is no ambiguity; for example we write mergem◦G to mean (mergem⊗id(X−,X+))◦G

and K~x+

~x− ◦P to mean (K~x+

~x−⊗id(Y −,Y +))◦P . Note that every atom and every molecule
are prime, furthermore an atom is also ground, but a molecule is not necessarily
ground, since it may have sites.

Now, we define some variants of the tensor product, whose can allow the sharing
of names. Process calculi often have a parallel product P | Q, that allows the
processes P and Q to share names. In directed bigraphs, this sharing can involve
inner downward names and/or outer upword names, as described by the following
definitions.

Definition 3.6 (sharing products) The outer sharing product, inner sharing
product and sharing product of two link graphs Ai : Xi → Yi (i = 0, 1) are de-
fined as follows:

(X−, X+) 	 (Y −, Y +) , (X− ] Y −, X+ ∪ Y +)

(X−, X+) � (Y −, Y +) , (X− ∪ Y −, X+ ] Y +)

A0 	 A1 , (V0 ] V1, E0 ] E1, ctrl0 ] ctrl1, link0 ] link1) : X0 ⊗X1 → Y0 	 Y1

A0 � A1 , (V0 ] V1, E0 ] E1, ctrl0 ] ctrl1, link0 ] link1) : X0 � X1 → Y0 ⊗ Y1

A0 ‖ A1 , (V0 ] V1, E0 ] E1, ctrl0 ] ctrl1, link0 ] link1) : X0 � X1 → Y0 	 Y1

defined when their interfaces are defined and Ai have disjoint node and edge sets.
The outer sharing product, inner sharing product and sharing product of two

bigraphs Gi : Ii → Ji are defined by extending the corresponding products on their
link graphs with the tensor product on widths and place graphs:

〈m,X〉 	 〈n, Y 〉 , 〈n + m,X 	 Y 〉 〈m,X〉 � 〈n, Y 〉 , 〈n + m,X � Y 〉

G0 	 G1 , 〈GP
0 ⊗GP

1 , GL
0 	 GL

1 〉 : I0 ⊗ I1 → J0 	 J1

G0 � G1 , 〈GP
0 ⊗GP

1 , GL
0 � GL

1 〉 : I0 � I1 → J0 ⊗ J1

G0 ‖ G1 , 〈GP
0 ⊗GP

1 , GL
0 ‖ GL

1 〉 : I0 � I1 → J0 	 J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is simple to verify that 	, � and ‖ are associative, with unit ε.
Another way of constructing a sharing product of two bigraphs G0, G1 is to

disjoin the names of G0 and G1, then take the tensor product of the two bigraphs
and finally merge the name again:

Proposition 3.7 Let G0 and G1 be bigraphs with disjoint node and edge sets. Then

G0	G1 = σ(G0⊗τG1ζ) G0�G1 = (G0⊗τG1ζ)δ G0 ‖ G1 = σ(G0⊗τG1ζ)δ
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where the substitution σ and τ are defined in the following way: if zi (i ∈ n) are
the upward outer names shared by G0 and G1, and wi are fresh names in bijection
with the zi, then τ(zi) = wi and σ(wi) = σ(zi) = zi (i ∈ n). The substitution δ and
ζ are defined in a very similar way, but acting on the downward inner names.

Definition 3.8 (prime products) The prime outer sharing product and prime
sharing product of two bigraphs Gi : Ii → Ji are defined as follows:

〈m, (X−, X+)〉 & 〈n, (Y −, Y +)〉 , 〈(X− ] Y −, X+ ∪ Y +)〉

G0 & G1 , merge(width(J0)+width(J1)) ◦ (G0 	 G1) : I0 ⊗ I1 → J0 & J1

G0 | G1 , merge(width(J0)+width(J1)) ◦ (G0 ‖ G1) : I0 � I1 → J0 & J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is easy to show that & and | are associative, with unit 1 when applied to prime
bigraphs. Note that for a wiring ω and a prime bigraph P , we have ω & P = ω 	 P

and ω | P = ω ‖ P , because in this case these products have the same meaning.
Now, we can describe discrete bigraphs, which are the complement of wirings:

Theorem 3.9 (discrete normal form) (i) Every bigraph G can be expressed
uniquely (up to iso) as: G = (ω ⊗ idn) ◦ D ◦ (ω′ ⊗ idm), where D is a dis-
crete bigraph and ω, ω′ are two wirings satisfying the following conditions:
• in ω, if two outer downward names are peer, then their target is an edge;
• in ω′ there are no edges, and no two inner upward names are peer (i.e., on in-

ner upward names ω′ is a renaming, but outer downward names can be peer).

(ii) Every discrete bigraph D : 〈m, (X−, X+)〉 → 〈n, (Y −, Y +)〉 may be factored
uniquely (up to iso) on the domain of each factor Di, as:

D = α⊗ ((D0 ⊗ · · · ⊗Dn−1) ◦ (π ⊗ iddom( ~D)))

with α a renaming, each Di prime and discrete, and π a permutation.

Proof. For the first part, consider a bigraph G : 〈n, (X−, X+)〉 → 〈m, (Y −, Y +)〉.
We divide G in three parts: a discrete D : 〈n, (Z−, Z+)〉 → 〈m, (W−,W+)〉 and
two wirings ω : (W−,W+) → (Y −, Y +) and ω′ : (X−, X+) → (Z−, Z+) satisfying
the previous conditions. We proceed by cases:

p ∈ P , linkG(p) = e ∈ E: we add a fresh name we ∈ W+ and define linkD(p) = we

and linkω(we) = e;

p ∈ P , linkG(p) = y ∈ Y +: we add a fresh name wy ∈ W+ and define linkD(p) =
wy and linkω(wy) = y;

p ∈ P , linkG(p) = x ∈ X−: this case is analogous to the previous one;

y ∈ Y −, linkG(y) = e ∈ E: we define linkω(y) = e;

x ∈ X+, linkG(y) = e ∈ E: we add a fresh name ze ∈ Z+, a fresh name we ∈ W+

and define linkω′(x) = ze, linkD(ze) = we, linkω(we) = e;

y ∈ Y −, linkG(y) = x ∈ X−: we add a fresh name wx ∈ W−, a fresh name zx ∈ Z−

and define linkω(y) = wx, linkD(wx) = zx and linkω′(zx) = x;

x ∈ X+, linkG(x) = y ∈ Y +: this case is analogous to the previous one; it is suffi-
cient to invert the direction of links and swap the rule of ω with ω′.
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Note that there are no idle names in Z−, Z+, W− and W+, so those sets are formed
only by the fresh names defined in this proof. Furthermore, the three conditions
above holds because we create a fresh name every time we need one.

The proof of the second part is easy. Since the outer interface of D has width
n, we can decompose D in n discrete and prime parts, obtaining D0 ⊗ · · · ⊗Dn−1.
The renaming α describe the connections between the inner interface and the outer
one. Finally the permutation π gives the right sequence of the sites, so we can take
the tensor product of Di (i = 0, . . . .n− 1) in any order. 2

We call this unique factorization discrete normal form (DNF). The DNF ap-
plies to abstract bigraphs as well, and indeed it will play an important part in the
complete axiomatization of DBig, as we will discuss in the next section.

Note that a renaming is discrete but not prime (since it has zero width); this is
why the factorization in Theorem 3.9(ii) has such a factor. This unique factorization
depends on the fact that the prime bigraphs have no upward inner names and
downward outer names. In the special case that D is ground, the factorization in
Theorem 3.9(ii) is simply D = d0 ⊗ · · · ⊗ dn−1, that is a product of discrete and
prime ground bigraphs.

4 Algebraic structure of DBig

In this section we describe a sound and complete axiomatization for directed ab-
stract bigraphs. Furthermore we give a normal form for discrete bigraphs, that is
useful to prove the completeness of the axiomatization.

First we introduce the algebraic signature, that is a set of elementary bigraphs
able to define any other bigraph (Figure 1).

We have to show that all bigraphs can be constructed from these elementary
ones by composition and tensor product. Before giving a formal result, we provide
an intutive explanation of the meaning of these elementary bigraphs.

• The first three bigraphs build up all wirings, i.e. all the link graphs having no
nodes. Indeed, all substitutions (fusions, resp.) can be obtained as tensor products
of elementary substitutions My

X (fusions OY
x , resp.); the tensor products of single-

ton substitutions My
x and/or singleton fusions Ox

y give all renamings. The compo-
sition and the tensor product of substitutions, fusions and closures give all wirings.

• The next three bigraphs define all placings, i.e. all place graphs having no nodes;
for example mergem : m → 1, merging m sites in a unique root, are defined as:

merge0 , 1 mergem+1 , merge ◦ (id1 ⊗mergem).

Notice that merge1 = id and merge2 = merge, and that all permutations
π : m → m are constructed by composition and tensor from the γm,n.

• Finally, for expressing any direct bigraph we need to add only the discrete ions
K~x+

~x− . In particular, we can express any discrete atoms as K~x+

~x− ◦ 1.

The following proposition shows that every bigraph can be expressed in a normal
form, called (again) discrete normal form (DNF). We will use D, Q and N to denote
primes, discrete prime bigraphs, and the discrete molecules respectively.
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y

x

H
N

x
y :(∅, y) → (x, ∅) closure

y

x1x2. . .xn

. . . My
X :(∅, X) → (∅, y) substitution

x

y1y2. . .ym

. . . OY
x :(x, ∅) → (Y, ∅) fusion

1:ε → 1 a barren root

1 2 merge:2 → 1 mapping 2 sites in 1 root

m+1 . . . m+n 1 . . . n γm,n:m + n → n + m swapping m with n

y1y2. . . yn

x1x2. . .xm. . .

. . .
K~x

~y :〈(~y, ∅)〉 → 〈(∅, ~x)〉 a discrete ion

Fig. 1. Elementary Bigraphs

Proposition 4.1 (discrete normal form) In DBig every bigraph G, discrete D,
discrete and prime Q and discrete molecule N can be described by an expression of
the respective following form:

G = (ω ⊗ idn) ◦D ◦ (ω′ ⊗ idm) (1)
where ω, ω′ satisfy the conditions given in Theorem 3.9(i);

D = α⊗ ((Q0 ⊗ · · · ⊗Qn−1) ◦ (π ⊗ iddom( ~Q))) (2)

Q = (mergen+p ⊗ id∅,Y +) ◦ (idn ⊗N0 ⊗ · · · ⊗Np−1) ◦ (π ⊗ id(Y −,∅)) (3)

N = (K~x+

~x− ⊗ id∅,Y +) ◦Q. (4)

Furthermore, the expression is unique up to isomorphisms on the parts.

Proof. The proof is quite similar to the proof of Theorem 3.9. 2

We can use these equations for normalizing any bigraph G as follows; first, we
apply equations (1), (2) to G once, obtaining an expression containing discrete
and prime bigraphs Q0, . . . , Qn−1. These are decomposed further using equations
(3), (4) repeatedly: each Qi is decomposed into an expression containing molecules
Ni,0, . . . , Ni,pi−1, each of which is decomposed in turn into an ion containing another
discrete and prime bigraph Q′

i,j . The last two steps are repeated recursively until
the ions are atoms. Note that the unit 1 is a special case of Q when n = p = 0.

In Figure 2 we give a set of axioms which we prove to be sound and complete.
Each of these equations holds only when both sides are defined; in particular,

recall that the tensor product of two bigraphs is defined only if the name sets are
disjoint. It is important to notice also that for ions only the renaming axiom is
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Categorical Axioms
A ◦ id = A = id ◦A A ◦ (B ◦ C) = (A ◦B) ◦ C

A⊗ idε = A = idε ⊗A A⊗ (B ⊗ C) = (A⊗B)⊗ C

γI,ε = idI γJ,I ◦ γI,J = idI⊗J

(A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)
γI,K ◦ (A⊗B) = (B ⊗A) ◦ γH,J (where A : H → I,B : J → K)

γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K)

Link Axioms
H
N

x
y ◦ My

z = H
N

x
z Oz

x ◦ H
N

x
y = H

N
z
y Ox ◦ H

N
x
y ◦ My = idε

Mz
(Y ]y) ◦ (id(∅,Y ) ⊗ My

X) = Mz
(Y ]X) (id(Y,∅) ⊗ OX

y ) ◦ O(Y ]y)
z = O(X]Y )

z

Place Axioms
merge ◦ (1⊗ id1) = id1 merge ◦ γ1,1 = merge

merge ◦ (merge⊗ id1) = merge ◦ (id1 ⊗merge)

Node Axioms

(id1 ⊗ α) ◦K~x+

~x− = K
α(~x+)
~x− K~x+

~x− ◦ (id1 ⊗ α) = K~x+

α(~x−)

Fig. 2. Axiomatization for the abstract directed bigraphs.

needed (because the names are treated positionally).

Theorem 4.2 (Completeness of the axiomatization) Let us consider two ex-
pressions E0, E1 constructed from the elementary bigraphs by composition and ten-
sor product. Then, E0 and E1 denote the same bigraph in DBig if and only if the
equation E0 = E1 can be proved by the axioms in Figure 2.

Proof. The proof is similar to that of [6, Theorem 10.2]. The “if” direction is
simple to prove, since it requires to check that each axiom is valid. The “only if”
direction is in two steps. First, we prove by induction on the structure of expressions,
that the equality between an expression and its DNF is derivable from the axioms.
Next, since DNFs are taken up to iso, we have to show that the equality between
isomorphic DNFs is provable from the axioms. This is proved by showing that the
axioms can prove the isomorphisms of the components of a DNF, which are ions,
discrete and prime bigraphs, and discrete bigraphs. 2

5 Application: the λ-calculus

In this section we describe an encoding of both the call-by-name and the call-by-
value λ-calculus. Recall that the set Λ of λ-terms are the terms up-to α-equivalence
generated by the following grammar:

M,N ::= x | λx.M | MN.

A value is either a λ-abstraction or a variable; values are ranged over by V .
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varx

x

var

lamx

x

λ

app

app

subx,y

x y

sub

defx

x

def

Fig. 3. The signature for the λ-calculus.

The call-by-name reduction semantics is defined by the following rules

(λx.M)N → M [N/x] (β)
M → M ′

MN → M ′N

N → N ′

MN → MN ′

while the call-by-value reduction semantics is defined by the following rules

(λx.M)V → M [V/x] (βv)
M → M ′

MN → M ′N

N → N ′

MN → MN ′

In Figure 3 we give a signature for representing the λ-calculus “with single
substitutions”, that is where a substitution is performed once for each variable
occurrence. This signature resembles Milner’s encoding using binding bigraphs, but
in directed bigraphs we do not need to introduce further binding structures.

We can define a translator operator J·K : Λ → DBig as follows:

JxK = varx Jλx.MK = lamx ◦ (JMK 	 Mx) JMNK = app ◦ (JMK 	 JNK)

Intuitively, a λ-term M is represented by a ground bigraph JMK : ε → 〈(∅, X+)〉
whose place hierarchy reflects the syntactic tree of M and the outer upwards names
X+ are the free variables of M . Each λ-expression is represented by a control and
a local resource which is bound to a upward name in the inner interface.

Proposition 5.1 Let M,N be two λ-terms; then, M ≡α N iff JMK = JNK.

Let us now see how we can represent the two semantics of the λ-calculus. For
the call-by-name semantics, we define the controls lam and def as passive, sub and
app as active. The reaction rules are given in Figure 4.

For the call-by-value λ-calculus, we have to replace the Appcbn rule with two
rules Appcbv-var and Appcbv-lam (Figure 5) corresponding to the two cases of values
where the application can be performed.

For both variants, we can prove the following result:

Proposition 5.2 Let M,M ′ be two λ-terms.

(i) If M → M ′ then JMK →∗ JM ′K;

(ii) If JMK →∗ JM ′K then M →∗ M ′.

Proof. By induction on the lenght of traces.

(i) The application of β (or βv) is encoded by applying Appcbn (or one of Appcbv-var

and Appcbv-lam) on the correct sub-bigraph, i.e. the one which encodes the right
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app

λ

0

x

1

app ◦ (lamx 	 id1) → subx,y ◦ (id1 	 defy)

sub

def

1

x

0

Appcbn

sub

def

10

subx,y ◦ (id1 	 Mx 	 defy) → id1

0 Subdispose

def

1

x

var

HN
x
y ◦ (vary 	 defy) → HN

x
y ◦ (id1 	 defy)

1

def

1

x

Subvar

Fig. 4. Reactions for the call-by-name λ-calculus.

app

λ

0

x

var

z

app ◦ (lamx 	 varz) → subx,y ◦ (id1 	 (defy ◦ varz))

sub

def

var

z

x

0

Appcbv-var

app

λ

0

x

λ

1

z

app ◦ (lamx 	 lamz) → subx,y ◦ (id1 	 (defy ◦ lamz))

sub

def

λ

1

zx

0

Appcbv-lam

Fig. 5. Reactions for the call-by-value λ-calculus.
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side of the rule. Next we use Subvar for every occurrence of x in M , finally we
apply Subdispose to eliminate the unnecessary controls sub and def .

(ii) First of all note that, by definition of J·K, JM ′K has no sub or def controls. If
JMK →∗ JM ′K, in the trace there are one or more application of Appcbn (or
Appcbv-var and Appcbv-lam), so we use the β (or βv) rule on the corresponding
λ-subterm. We can ignore the Subvar and Subdispose rules because the substi-
tutions in λ-calculus are performed instantaneously. 2

6 Conclusions

In this paper we have given a sound and complete axiomatization of the precategory
of directed bigraphs, a bigraphical model which subsumes and generalizes both Mil-
ner’s and Sassone-Sobociński variants. We have used this axiomatization for encod-
ing the λ-calculus, both in call-by-name and call-by-value variants. It is interesting
to notice that no further extensions (such as binding signatures) are needed.

We plan to use this axiomatization for representing other calculi, in particular
calculi with resources, locations, etc., which can be represented by edges. Interest-
ing candidates could be the Fusion calculus [9] and the ν-calculus [10]; it will be
interesting to see which kind of wide transition systems we would obtain.

The new discrete normal form, and associated composition operations, presented
in this paper can be useful in view of possible applications and extensions of logics
and matching tools for bigraphs, in the line of [1,2]. Another future work is to give
a 2-categorical definitions of directed link graphs.
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Sato and HassanIn this paper we take step towards developing a riher language based on In-teration Nets. Interation Nets have a very primitive notion of pattern mathingsine only two agents an interat at a time. Consequently, many auxiliary agentsand rules are needed to implement more sophistiated mathes. These auxiliariesare implementation details and should be generated automatially other than bythe programmer. To ahieve this, we extend Interation Nets to allow rules withnested patterns to be de�ned. We then give a ompilation sheme from extendedto ordinary interation rules.There has been several works that extend Interation Nets in some way (seeSetion 6.2). Sinot and Makie's Maros for Interation Nets [10℄ are quite loseto what we present in this paper. They allow pattern mathing on more thanone argument by relaxing the restrition of one prinipal port per agent. The maindi�erene with our work is that their system does not allow nested pattern mathing.Our system failitates nested/deep pattern mathing of agents.The rest of this paper is organised as follows: In the next setion we give a briefintrodution to Interation Nets. In Setion 3 we motivate our work through anexample. We give the proposed extensions in Setion 4, followed by the ompilationshemes in Setion 5. In Setion 6 we disuss some implementation issues. Finally,we onlude the paper in Setion 7
2 Interation NetsWe review the basi notions of Interation Nets. See [5℄ for a more detailed presen-tation. Interation Nets are spei�ed by the following data:� A set � of symbols. Elements of � serve as agent (node) labels. Eah symbolhas an assoiated arity ar that determines the number of its auxiliary ports. Ifar(� 2 �) = n, then � has n+1 ports: n auxiliary ports and a distinguished onealled the prinipal port. ���� ����We use the textual notation x0 � �(x1; :::; xn) to represent an agent � where x0is the prinipal port and x1; :::; xn are its auxiliary ports.� A net built on � is an undireted graph with agents at the verties. The edgesof the net onnet agents together at the ports suh that there is only one edgeat every port. A port whih is not onneted is alled a free port.� Two agents (�; �) 2 ��� onneted via their prinipal ports form an ative pair(analogous to a redex). An interation rule ((�; �) ! N) 2 R replaes the pair(�; �) by the net N . All the free ports are preserved during redution, and thereis at most one rule for eah pair of agents. The following diagram illustrates theidea, where N is any net built from �.94



Sato and Hassan�	 
 ���� ���� �� ���� ����We represent this rule textually as �(x1; :::; xn) 1 �(y1; :::; ym)! N . The order ofwriting the ative agents in this textual form is not important. The same rule anbe written as �(y1; :::; ym) 1 �(x1; :::; xn) ! N . We use the notation N1 ) N2for the one step redution and )� for its transitive and reexive losure.Interation Nets have the following property [5℄:� Strong Conuene: Let N be a net. If N ) N1 and N ) N2 with N1 6= N2,then there is a net N3 suh that N1 ) N3 and N2 ) N3.3 MotivationsIn this setion, we motivate our work by investigating how we an translate afuntion with pattern mathing into Interation Nets.Example 3.1 Our example is the following de�nition of a funtion that returnsthe last element of a list:fun lastElt [x℄ = x| lastElt (x::xs) = lastElt xs;If we onsider a funtional programming language as an orthogonal term rewritingsystem, we an translate programs into Interation Nets [3℄. In this way, if we takeboth the name of the funtion and the �rst argument as agents, we an representthe above funtion as interation rules:�������������� �������� ������ ������� �������������� ���������������� � �������������� ��������  ! !" # " # " # " #$%& $%& $%& $%&However, these rules are not valid in Interation Nets as the left hand side (LHS)of a rule must be a net with exatly two agents (ative pair).Therefore, to enode this example in interation nets, we have to introdueauxiliary agents and rules:
'()*+'*'()*+'* ,,-./)-./)012012'()*+'*'()*+'* -./)-./) 012012012 012012 34'34' -./)-./)5 6 78 5 6 78 5 65 6 5 69:; 9:; 5 6 9:; 9:;This set of rules will ompute and return the last element of a list. We arguethat the introdution of the auxiliary agents to the system is not satisfatory from95



Sato and Hassana programmers perspetive. Programmers want to write simpler programs ratherthan more ompliated ones. To solve this problem, we extend the de�nition ofrules to failitate nested pattern mathing.4 Interation rules for nested patterns (INP)4.1 An extension of the de�nition of interation rulesIn this setion we present our framework INP that extends ordinary interationrules (ORN) so that we an perform rewritings between nested agents. The maindi�erene from ORN is that we allow the left hand side of a rule to ontain morethan two agents. The de�nition of agents and nets remain the same as for ORN.De�nition 4.1 A nested ative pair P is indutively de�ned as follows:Base: Every ative pair in ORN is a nested ative pair<=<= >=>=represented textually as: h�(x1; :::; xn) 1 �(y1; :::; ym)i.Step: A net obtained as a result of onneting the prinipal port of some agent toa free port in a nested ative pair P is also a nested ative pair.?@AB BBCWe represent this nested ative pair textually as hP; yj � (z1; :::; zl)i.De�nition 4.2 An interation rule in INP is given by P ! N where P is a nestedative pair. All the free ports are preserved during redution, and there is at mostone rule with P in any given system.Proposition 4.3 ORN � INP.Proof. All rules P ! N where P ontains just two agents (ative pair) are validORN rules. These ative pairs fall into the base de�nition of nested ative pairs.2We aim to extend ORN in a onservative way and retain the property of strongonuene. For this purpose, we introdue a ondition that restrits the formationof the set of interation rules in INP.De�nition 4.4 A set of nested ative pairs P is sequential if and only if, whenhP; yj � (z1; :::; zl)i 2 P, then� for the nested pair P , P 2 P and,� for all free ports y in P exept the yj and for all agents �, hP; y � �(w1; :::; wn)i 62P. 96



Sato and HassanAs an example, onsider the following nested ative pair P in a sequential set P:
DEDED FDGH IJ KL MNOP IQRrepresented textually as h�(x1; :::; xn) 1 �(y1; :::; ym); y1 � (z1; :::; zl)i. Then wean not have any other nested ative pair (�; �) suh that the port y1 is free. Thus,the following de�nitions violet the ondition of the set P:

STUSTU SVS WSXY Z[ \]_̂ VSVS WSXY Z[ \]_̂ VS WSà XY Z[ \]VSVS WSà XY Z[ \]STUSTU bcb db efgh ij klcbcb db efgh ij kl cb dbmn efgh ijcbcb dbmn efgh ijbopbop bopFor larity, we draw lines and triangles on auxiliary ports that onnet to nestedagents. As an example, we represent a nested ative pair hP; ym � 0(w1; :::; wk)igraphially as follows: qr rr
sr tuv

qr rr
sr tuvNote that this nested ative pair belongs to the set P beause P 2 P.De�nition 4.5 A set of rules R in INP is well-formed if and only if,� there is a sequential set whih ontains every nested ative pair of the LHS in R,� for every rule P ! N in R, there is no interation rule P 0 ! N 0 in R suh thatP 0 is a subnet of P .Example 4.6 The rule set in Example 3.1 is well-formedwxyz{wz |}~y ��wwxyz{wzwxyz{wz |}~y|}~y ��w��wwxyz{wzwxyz{wz |}~y|}~y ��w��w� � � � wxyz{wz |}~y|}~y wxyz{wz |}~y�� � � ���� ���wxyz{wz |}~y|}~ywxyz{wzwxyz{wz |}~y|}~y|}~y|}~y wxyz{wzwxyz{wz |}~y|}~y��� � � ���� ��� ��� ���and the following omputation an be performed:97
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� ��������In the above example, the rewriting is strongly onuent beause there is noritial pair. We loose this property if there are more than two rules that an beapplied to the same net.Example 4.7 We an enode the following de�nition of the parallel-or funtionpor: por(True; y) = Truepor(y; True) = Truepor(False; y) = ypor(y; False) = yas a set of INP rules:
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¥ ¨©¥ ¦§ ¥ ¦§ ¥ ¨©However, this is not a well-formed set of rules beause there is no sequential set whihontains both hpor(x) 1 Pair(y1; y2); y1 � Truei and hpor(x) 1 Pair(y1; y2); y2�Truei. Therefore, the redution is not strongly onuent (but still onuent in thisexample).
ª«¬ ®̄¬°¬±²°¬±²

°¬±²°¬±²³³
®́µ¶²®́µ¶² · ®́µ¶²®́µ¶² ¸ °¬±²°¬±²¹On the other hand, the following rule set of the or funtion is well-de�ned:98
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º» Ç½ÈÉÃÇ½ÈÉÃÄ ÄProposition 4.8 (Strong Conuene) If a given rule set R in INP is well-formed, then the redution in R is strongly onuent.Proof. Assume that P ! N 2 R. There are two ases where ritial pairs anarise for a net whih ontains P :ase 1: there is no overlap between rules. We assume that there is a rule P1 !N1 2 R where P1 does not overlap with P . In this ase, the redution is stronglyonuent: ÊËÌ ËÍÎËÌ ËÍÎËÏ ËÐÑËÏ ËÐÑ ËÒ ËÐÑËÒ ËÐÑËÓ ËÔÕËÔÕËÓ ËÔÕËÔÕËÔÕËÔÕ ÊÖ Öase 2: there are overlaps between rules.ase 2.1: We assume that there is a rule P2 ! N2 2 R where P2 is a subnet ofP .
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ß
This ase an not arise if R is well formed. Therefore P2 ! N2 62 Rase 2.2: We assume that there is a rule P3 ! N3 2 R where P3 ontains thesubnet of P 0.
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àåæ çà àèéêë ìíîïï ððThere is no sequential set whih ontains both P and P3, therefore P3 ! N3 62R. 299



Sato and Hassan5 TranslationIn this setion, we de�ne the translation funtion T from interation rules withnested ative pairs to interation rules with only ative pairs:� If a nested ative agent ontains an ative pair of just two agents, then thetranslation is the identity:ñ òó ôóôó õö÷øù úûüý úûüýö÷øù ó óþ òó ôó õö÷øù úûüý úûüýö÷øù ó óþ òó ôóôó õö÷øù úûüý úûüýö÷øù ó ó ÿ� The translation of a rule P ! N whereP = h�(p1; :::; pw) 1 �(q1; ::; qk; ::; qu); qk � (z1; :::; zl); ai where a is a sequeneof agents, generates the following rules:� �(p1; :::; pw) 1 �(q1; ::; qk; ::; qu) ! qk � ��(q1; ::; qk�1; qk+1; ::; qu; p1; :::; pw)where �� is a new agent named from a onatenation of the LHS nested ativepair agents. Sine qk is onneted to the prinipal port of , an ative pair(��; ) will be formed.� 
��(q1; ::; qk�1; qk+1; ::; qu; p1; :::; pw) 1 (z1; :::; zl); a�! N . This rule is reur-sively translated to obtain a rule with just an ative pair.Graphially, this translation is given by:�� � ������	
 � ��������	
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Sato and HassanExample 5.1 We give the translation of the funtion in Example 3.1 that omputesand returns the last element of a list.A
BCDEFBEGHIDBCDEFBEGHIDJ BCDEFBEBCDEFBE GHIDGHIDBCDEFBEBCDEFBE GHIDGHID KLBKLBA BCDEFBEGHIDBCDEFBEGHIDMBCDEFBEGHIDBCDEFBEGHIDJ BCDEFBEBCDEFBE GHIDGHIDBCDEFBEBCDEFBE GHIDGHID KLBKLBBCDEFBEGHIDBCDEFBEGHIDM N

BCDEFBE GHIDKLBBCDEFBEBCDEFBE GHIDGHIDKLBKLBBCDEFBEBCDEFBE GHIDGHIDKLBKLBO P O P
O P QR O P QR O P O PO P O PO P QR O P QRS TUVWXTW YZ[VYZ[V TUVWXTW YZ[V\] ^ ] ^_̀a _̀aS TUVWXTW YZ[VYZ[VTUVWXTWTUVWXTW YZ[VYZ[VYZ[VYZ[V TUVWXTWTUVWXTW YZ[VYZ[V\\] ^ ] ^_̀a _̀a _̀a _̀aTUVWXTWYZ[Vb TUVWXTW YZ[VTUVWXTW YZ[V S TUVWXTWYZ[Vc YZ[V TUVWXTW YZ[V\] ^ de ] ^ de ] ^ a _̀ ] ^ a _̀TUVWXTWYZ[VTUVWXTWYZ[Vb TUVWXTWTUVWXTW YZ[VYZ[VTUVWXTWTUVWXTW YZ[VYZ[V S TUVWXTWYZ[VTUVWXTWYZ[Vc YZ[VYZ[V TUVWXTW YZ[V\TUVWXTWTUVWXTW YZ[VYZ[V\\] ^ de ] ^ de ] ^ a _̀ ] ^ a _̀TUVWXTWYZ[Vb TUVWXTW YZ[VTUVWXTW YZ[V c f] ^ de ] ^ de TUVWXTWYZ[V YZ[V TUVWXTW YZ[V\] ^ a _̀ ] ^ a _̀TUVWXTWYZ[VTUVWXTWYZ[Vb TUVWXTWTUVWXTW YZ[VYZ[VTUVWXTWTUVWXTW YZ[VYZ[V c f] ^ de ] ^ de TUVWXTWYZ[VTUVWXTWYZ[V YZ[VYZ[V TUVWXTW YZ[V\TUVWXTWTUVWXTW YZ[VYZ[V\\] ^ a _̀ ] ^ a _̀Lemma 5.2 Let R be a well-formed rule set in INP and R1; R2 2 R. Then, a ruleset T[R1℄[T[R2℄ ontains no rule suh that P ! N1 and P ! N2 where N1 6= N2.Proof. Let R1 = P1 !M1 and R2 = P2 !M2.ase 1: the ative pairs in P1 and P2 are di�erent. In this ase, distint names areintrodued by T for those ative pairs respetively. Therefore, every LHS of therules generated by reursively applying T also have distint ative pairs.ase 2: the ative pairs in P1 and P2 are the same. Beause both P1 and P2belong to the same sequential set, then P1 and P2 have a same sequene of agentssueeding from the ative pair. Therefore, in the set obtained from this sequeneby using T, there is no rule suh that P !M1 and P !M2. For the remainingagents, it turns out that there is no suh rule by applying ase 1. 2Proposition 5.3 Let R be a well-formed rule set in INP. The set [T[R℄ whereR 2 R is a orret rule set in ORN. 101



Sato and HassanProof. From the de�nition of T, it is lear that every LHS of rules obtained byusing T ontains only an ative pair. Moreover, by Lemma 5.2, there is no ruleP ! N1 and P ! N2 in the resulting rule set. 2Proposition 5.4 (Conservativity) Let R be a well-formed set of rules in INP. IfP ! N 2 R, then P )� N by using the rules obtained by the translation T[P ! N ℄.Proof. If P is just an ative pair, then we an perform P ) N beause T[P !N ℄ = P ! N .If P = h�(x) 1 �(y; y); y � (z); ai where x;y; z are sequenes of auxiliaryports and a is a sequene of agents, thenT[P ! N ℄ = �(x) 1 �(y; y)! ��(x;y) � y; T[ 
��(x;y) 1 (z); a�! N ℄:By using the �rst rule,�(x) 1 �(y; y); y � (z); a ) ��(x;y) � (z); a:Applying reursively this operation to the rule 
��(x;y) 1 (z); a� ! N and thenested agent pair ��(x;y) 1 (z), we will perform P )� N . 26 Disussion6.1 ImplementationIn this setion we briey disuss implementation issues of INP. There are two ap-proahes to implement INP. One is to translate into ORN rules then use existingevaluators of Interation Nets. The other is to implement them diretly. Here welook at this seond option, and show how the main tasks of performing omputationin this framwork an be ahieved. Our aim here is to show that a diret implemen-tion of INP an be done quite easily. We desribe a simple method of ahievingthis.The main tasks of an Interation Net evaluator are to loate the next ative pairto redue, �nd the mathing rule, and apply it to the ative pair.Loating the next ative pair an be done loally during rewrite; while rewiringthe ports, we hek if an ative pair is formed then push it into a stak. Redutionwill then pop the ative pairs from the stak and �nd the mathing rule to apply.We an store rules in a hash table with a key formed from an ordered onate-nation of the (LHS) ative pair names. Sine INP rules an have more than oneative pair of the same agents, we maintain a list suh that eah key maps onto alist of rules that share the same ative pair names. We iterate through the list to�nd a rule that mathes the struture of the ative pair to be redued.Although ORN will �nd the mathing rule in onstant time (eah key will onlymap to one rule) the total number of interations I performed in ORN: I(ORN) >I(INP) for a system with nested agents, and I(ORN) = I(INP) if there is no nestedagents. This omes from the fat that ORN introdues extra auxiliary rules forpattern mathing. 102



Sato and HassanIf we de�ne the ost of omputation to be the number of interations performed,then INP provides an eÆient model. However, without empirial studies we arenot able to say whih system is eÆient in terms of exeution speed.6.2 Related WorksIn this setion, we disuss other approahes to nested pattern mathing by usingmethods that have been proposed as extensions of Interation Nets.Pattern mathing on more than one argument: Sinot and Makie [10℄ intro-duedMaros for Interation Nets and they allow pattern mathing on more thanone argument by relaxing the restrition of one prinipal port per agent. Theirsystem requires all prinipal ports of an agent in the LHS net of a rule to be on-neted to prinipal ports of other agents for the purpose of holding the propertyof strong onuene. Therefore, this system is useful as a onservative extension.However, we an hardly enode the funtion lastElt as it requires nested pat-tern mathing. This is beause in the ase that the Cons agent has two prinipalports, we have to write all ases as follows:ghijkgj lmniopgghijkgj lmnighijkgj lmniopgghijkgj lmnighijkgjghijkgj lmniopgopgghijkgjghijkgj lmni ghijkgjghijkgj lmnilmni opglmnilmni ghijkgj lmniq opg
ghijkgjghijkgjghijkgjghijkgj lmnilmnilmnilmni opgopglmnilmnilmnilmni ghijkgjghijkgj lmniqq opgopg rrr

opgopg
ghijkgjghijkgj lmnilmnilmnilmni opglmnilmni

ghijkgj lmniq lmnilmni
ghijkgjghijkgjghijkgjghijkgj lmnilmnilmnilmnilmnilmnilmnilmni opgopglmnilmnilmnilmni

ghijkgjghijkgj lmniqq lmnilmnilmnilmniAlexiv's interation nets with multiple prinipal ports (IMNPP) [1℄ is also usefulfor this purpose beause this system also allows more than one prinipal port peragent. However, interations are still performed only on an ative pair. Therefore,in the ase of nested pattern mathing, we have to introdue auxiliary agents andrules as in Setion 3. As another solution, we an introdue rules between Consand Nil:stuvwxy stuvwxyz zstuvwxywxy stuvwxystuvwxyz z stuvstuvz { |} stuvstuvz {stuvstuvstuvstuvz { |} stuvstuvz { |} y~v��y�y~v��y� stuvwxyz� z�y~v��y�y~v��y�y~v��y�y~v��y� stuvwxystuvwxyz� z� y~v��y�y~v��y� stuvstuvz { |}� y~v��y� stuv�� z { |}y~v��y�y~v��y�y~v��y�y~v��y� stuvstuvz { |}� y~v��y� stuv�� z { |}y~v��y�y~v��y� stuv��� z { |}These ause omputation between the list strutures even if it is not needed.���������������������������� ����������������
���������������������� ������� ����������������������������� ������������������������������
�������������� ��������������������������������������� ���������������������� ������� ����� ���

�������������� ������ �������� � ���� ��
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Sato and HassanComputation for nets: Bahet [2℄ proposed omputation for nets on interationrules as abbreviations, where nets are aptured as an agent and redutions ofthe agent are realized by the rules orresponding to the omputation of the net.As an example of applying this method to nested pattern mathing, we onsiderour example funtion lastElt. One solution is to de�ne the agent lastElt byusing other agents that have already been de�ned. It is not simple to �nd a goodombination with those agents. As another solution, we introdue abbreviationsfor list strutures: ������������ �������� ����� ��������� �  ��������� � � ������������ ��������������������������� �������� ��������������� ����� ��������� �  ��������� � � ����� ������������� �  ��������� � � However, we have to de�ne rules between lastElt and Cons for the ase thatthose abbreviations are unfolded, therefore we have to introdue auxiliary agentsin the end.7 ConlusionWe have shown how to extend Interation Nets to failitate nested pattern mathingwithout introduing auxiliary rules. This provides a onvenient and a more naturalway of expressing Interation Net programs. We see this extension as a positivestep towards using Interation Nets as a pratial programming language.Referenes[1℄ Alexiev, V., \Non-deterministi interation nets," Ph.D. thesis (1999), adviser-Jia You.[2℄ Behet, D., Partial evaluation of interation nets, in: M. Billaud, P. Cast�eran, M. M. Corsini,K. Musumbu and A. Rauzyand, editors, Proeedings of the Seond Workshop on Stati AnalysisWSA'92, Bigre Journal 81-82, 1992, pp. 331{338.[3℄ Fern�andez, M. and I. Makie, From term rewriting to generalised interation nets, in: H. Kuhen andS. D. Swierstra, editors, Proeedings of the 8th International Symposium on Programming Languages,Implementations, Logis and Programs (PLILP'96), Leture Notes in Computer Siene 1140 (1996),pp. 319{333.[4℄ Gonthier, G., M. Abadi and J.-J. L�evy, The geometry of optimal lambda redution, in: Proeedings ofthe 19th ACM Symposium on Priniples of Programming Languages (POPL'92) (1992), pp. 15{26.[5℄ Lafont, Y., Interation nets, in: Seventeenth Annual Symposium on Priniples of ProgrammingLanguages (1990), pp. 95{108.[6℄ Lamping, J., An algorithm for optimal lambda alulus redution, in: Proeedings of the 17th ACMSymposium on Priniples of Programming Languages (POPL'90) (1990), pp. 16{30.[7℄ Lippi, S., in2 : A graphial interpreter for interation nets, in: S. Tison, editor, Rewriting Tehniquesand Appliations (RTA'02), Leture Notes in Computer Siene 2378 (2002), pp. 380{386.[8℄ Makie, I., YALE: Yet another lambda evaluator based on interation nets, in: Proeedings of the 3rdInternational Conferene on Funtional Programming (ICFP'98) (1998), pp. 117{128.[9℄ Pinto, J. S., Parallel evaluation of interation nets with mpine., in: A. Middeldorp, editor, RTA, LetureNotes in Computer Siene 2051 (2001), pp. 353{356.[10℄ Sinot, F.-R. and I. Makie, Maros for interation nets: A onservative extension of interation nets.,Eletr. Notes Theor. Comput. Si. 127 (2005), pp. 153{169.104
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Sub-λ-calculi, classified
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Abstract

When sharing is studied in the λ-calculus, some sub-calculi often pop up, for instance λI or the linear
λ-calculus. In this note, we propose a definition and a complete classification of a large class of such
sub-calculi.

Keywords: λ-calculus, sharing, linearity

1 Introduction

Sharing is an important but difficult issue, in particular in the λ-calculus. Some-
times, in order to simplify the problem or tackle it in a more focused way, attention
is restricted to a particular subsystem of the λ-calculus. Such subsystems include
λI, where erasing is forbidden, or the linear λ-calculus, where all terms are lin-
ear [1]. These subsystems are defined by imposing some restrictions on the number
of occurrences of bound variables. In this note, we propose to generalise this idea
and study in a systematic way such sub-calculi.

2 Sub-calculi

We assume basic knowledge of the λ-calculus, see [1] for more details.

Definition 2.1 We define the number of free occurrences of a variable x in a λ-term
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t, written |t|x, as follows:

|x|x = 1
|y|x = 0
|t u|x = |t|x + |u|x
|λx.t|x = 0
|λy.t|x = |t|x

Remark that |t|x is well-defined on α-equivalence classes (i.e. if t =α u then
|t|x = |u|x for any variable x).

Our purpose is to study subsystems of the λ-calculus. One possible way to char-
acterise such subsystems in the most general fashion would be to have a predicate
P on λ-terms such that t belongs to the subsystem if and only if P(t) holds. This
representation is too general to be interesting: there is little hope to obtain a nice
characterisation theorem in such a general setting. We thus focus our attention on
the following, more restricted class of subsystems.

Definition 2.2 If P is a predicate on natural numbers, we define the set of λP -
terms as follows:

t, u ::= x | t u

| λx.t if P(|t|x)

In addition, we may or may not impose that P(|t|x) holds for every free variable
x of an open term t. If we do, we say that we are under the strict convention; if
we do not, we say that we are under the relaxed convention. We also define the
λP -calculus as the set of λP -terms equipped with β-reduction →β.

The strict convention entails some unpleasant syntactic accidents, as will be
shown later. These accidents would disappear if we added (unconstrained) con-
stants. However, the pure λ-calculus view of constants is exactly as free variables,
which should thus be unconstrained. Consequently, we always assume the relaxed
convention, unless otherwise stated.

With such a definition, it is natural to wonder how well P characterises λP . From
now on, operations on propositions are always implicitly lifted to predicates, which
means that, for instance, if P andQ are predicates, P∧Q is the predicate defined by,
for all n, (P∧Q)(n) = P(n)∧Q(n). Moreover, P, Q, implicitly denote predicates on
natural numbers. We also allow the definition of predicates by partial application
of infix binary predicates, in a Haskell-like style, e.g. (≥ 3) is the predicate defined
by, for all n, (≥ 3)(n) = (n ≥ 3).

Proposition 2.3 (λP ⊆ λQ) ⇐⇒ (P ⇒ Q).

Proof.

⇒ Assume n ≥ 1 and P(n). We can build the term t = λx. x . . . x︸ ︷︷ ︸
n

∈ λP ⊆ λQ.

Then t ∈ λQ, hence Q(n), by definition of λQ. For the case n = 0, we use
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instead t = λx.z where z is a free variable (remember that we assume the relaxed
convention).

⇐ Assume t ∈ λP and let λx.u be a subterm of t. By definition of λP , P(|u|x)
holds, and so does Q(|u|x). Since this holds for every sub-abstraction of t, we
may conclude t ∈ λQ.

2

Remark 2.4 The left-to-right implication is false under the strict convention with-
out constants, for instance λ⊥ = λ(=0) = ∅.

In particular, an immediate corollary of Proposition 2.3 is that λP = λQ if and
only if P ⇔ Q. In other words, P exactly characterises λP .

3 Stability

Definition 3.1 A set of λ-terms S is said to be stable if it is closed under β-
reduction, i.e. if whenever t ∈ S and t →β u, then u ∈ S. Moreover, we also say
that P is stable if λP is stable.

The notion of λP -calculus only makes sense when the set of λP -terms is stable.
Fortunately, we can characterise this in a slightly more operational way.

Lemma 3.2 P is stable if and only if

∀m ≥ 0, n ≥ 0, 0 ≤ k ≤ n.P(m) ∧ P(n) =⇒ P(n + k ·m− k).

Proof. First remark that, with the notations of the lemma, n + k · m − k ≥ 0,
because n − k ≥ 0 and k · m ≥ 0. Let’s consider an arbitrary β-reduction under
an arbitrary binder (if the reduction is not under a binder, this is irrelevant to the
kind of conditions we have):

λy.C[(λx.t) u]→β λy.C[t{x := u}].

Let us write m = |t|x, n = |C[(λx.t) u]|y and k = |u|y. We thus have |C[t]|y = n− k

and |C[t{x := u}]|y = n + k ·m − k. The reduct thus belongs to λP if and only if
P(n+k ·m−k) holds for all n and k (corresponding to every choice of outer binder
λy). Indeed, P is stable if and only if P(n + k ·m − k) holds whenever P(m) and
P(n) hold. 2

Theorem 3.3 P is stable (i.e. the λP-calculus is well-defined) if and only if

∀m ≥ 0, n ≥ 1.P(m) ∧ P(n) =⇒ P(m + n− 1).

Proof. Using Lemma 3.2 and the fact that the other implication is trivial, we
assume that ∀m ≥ 0, n ≥ 1.P(m) ∧ P(n) =⇒ P(m + n − 1) and we only have to
show that P(n + k ·m − k) holds if m ≥ 0, n ≥ 0, 0 ≤ k ≤ n, P(m) and P(n). If
n = 0, this is trivially true, because k = 0, thus n + k ·m− k = 0, and P(0) = P(n)
holds by hypothesis. We may thus assume n ≥ 1, and we prove the statement by
induction on k. If k = 0, it is true because n + k · m − k = n and P(n) holds
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by hypothesis. Let 0 ≤ k ≤ n − 1 and assume P(n + k · m − k) holds. Then,
P(n+(k +1) ·m− (k +1)) = P(m+(n+k ·m−k)−1) holds using the assumption,
the induction hypothesis, and the fact that n + k ·m − k ≥ 1 because k ≤ n − 1
and k · m ≥ 0. We indeed conclude that the statement holds for all k such that
0 ≤ k ≤ n. 2

4 Examples

Example 4.1 We use Theorem 3.3 to recover some well-known stability results.

• λ> (aka. the λ-calculus) is stable;
• λ(=1) (aka. the linear λ-calculus) is stable;
• λ(≥1) (aka. λI) is stable;
• λ(≤1) (aka. the affine λ-calculus) is stable.

Proof. We only show the proof for λ(≥1). Assume m ≥ 1 and n ≥ 1, then m + n−
1 ≥ 1 + 1− 1 = 1. Using Theorem 3.3, we conclude that (≥ 1) is stable. The proof
shows that 1 plays a special role in this framework. 2

Example 4.2 There are also some less usual sub-calculi, with a more questionable
computational content.

• λ⊥ (where there is no λ-abstraction) is stable (under the strict convention, this
calculus is empty);

• λ(=0) (where there is no occurrence of bound variables) is stable (under the strict
convention, this calculus is empty);

• λ(≥2) is stable;
• more generally, if b ≥ 1, λ(≥b) is stable;
• however, if b ≥ 2, λ(≤b) is not stable.

Proof. The first two sub-calculi are degenerated, which is evidenced by the fact
that the condition in Theorem 3.3 is true because the premises of the implication
can never be satisfied. Let b ≥ 1, we verify that λ(≥b) is stable. Let m ≥ b and
n ≥ b, then m + n− 1 ≥ 2 · b− 1 ≥ b, since b− 1 ≥ 0. Thus λ(≥b) is stable. 2

Using Theorem 3.3, we give some non-trivial sub-calculi (or non-sub-calculi) of
the λ-calculus (of course only those of the form λP for some P).

Example 4.3 Let odd(n) = (∃k ≥ 0.n = 1 + 2 · k), then odd is stable. The “odd
calculus” λodd is a simple, non-trivial stable sub-calculus.

Proof. Assume odd(m) and odd(n). Then, there exist k, k′ ≥ 0 such that m =
1+2 ·k and n = 1+2 ·k′. Then m+n−1 = (1+2 ·k)+(1+2 ·k′)−1 = 1+2 ·(k+k′)
with k + k′ ≥ 0, and indeed odd(m + n− 1) holds. 2

Remark 4.4 The “even calculus” λeven defined by even(n) = (∃k.n = 2 · k) is
not stable (we are therefore reluctant to call it a calculus). This can be seen as a
consequence of Theorem 3.3 or directly: λy.(λx.x x) y y →β λy.y y y.
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In fact, the previous example can be generalised to the following large class of
stable sub-calculi.

Example 4.5 Let q ≥ 1 and multq(n) = (∃k ≥ 0.n = 1+k ·q), then λmultq is stable.

Proof. Similarly, using (1 + k · q) + (1 + k′ · q)− 1 = 1 + (k + k′) · q. 2

We will see in Section 6 that essentially all stable λP -calculi can be decomposed
in calculi of this form.

5 Syntactic Properties

Theorem 5.1 If P is stable, the λP-calculus is confluent.

Proof. Assume u1
∗
β← t →∗

β u2 in the λP -calculus. Then there exists a λ-term v

such that u1 →∗
β v ∗

β← u2, by confluence of the λ-calculus, and v is a λP -term by
stability of P. 2

Theorem 5.2 If P is stable, the λP-calculus is strongly normalising if and only if
P(n) does not hold for any n ≥ 2.

Proof. If P(n) does not hold for any n ≥ 2, the λP -calculus is a subsystem of
λ(≤1), i.e. the affine λ-calculus, which is strongly normalising. Conversely, assume
that P(n) holds for some n ≥ 2. Then we can build the non-normalising λP -term
(λx. x . . . x︸ ︷︷ ︸

n

) (λx. x . . . x︸ ︷︷ ︸
n

). 2

6 Classification

With Theorem 3.3 in hand, we characterise further the sub-calculi of the λ-calculus
(of the form λP for some P).

Proposition 6.1 If P and Q are stable, then P ∧Q is stable.

Proof. Straightforward, even without Theorem 3.3. 2

Remark 6.2 If P and Q are stable, P ∨Q is not necessarily stable.

Proof. Let P(n) = (∃k ≥ 0.n = 1 + 2 · k) and Q(n) = (∃k ≥ 0.n = 1 + 3 · k).
According to Example 4.5, P and Q are stable. (P ∨Q)(3) holds since P(3) holds,
(P ∨ Q)(4) holds since Q(4) holds, but (P ∨ Q)(3 + 4 − 1) = (P ∨ Q)(6) does not
hold since neither P(6) or Q(6) holds. In other words, P ∨Q is not stable. 2

Proposition 6.3 If P is stable and P(2) holds then P(n) holds for all n ≥ 2.

Proof. By induction on n. P(2) holds by hypothesis. Assume P(n) holds, then
using Theorem 3.3, P(n + 2− 1) = P(n + 1) also holds. 2

Proposition 6.4 If P is stable and if P(0) and P(n) hold for some n ≥ 2, then
P(n) holds for all n ≥ 0. In other words, we get the full λ-calculus.

Proof. We show that P(k) holds for 0 ≤ k ≤ n by reverse induction on k. P(n)
holds by hypothesis. Let 1 ≤ k ≤ n and assume that P(k) holds. Then P(k − 1) =
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P(0 + k − 1) holds using Theorem 3.3, stability of P, the induction hypothesis,
and the facts that k ≥ 1 and P(0) holds. In particular, P(2) holds and we use
Proposition 6.3. 2

As evidenced in Remark 6.2, disjunction is not a well-behaved operation with
respect to stability. However, the following proposition exhibits the particular be-
haviour of 1, and tends to show that, to some extent, the choice of P(1) is not
relevant for the stability of P.

Proposition 6.5 (i) if P is stable, then P ∨ (= 1) is stable;

(ii) if P ∨ (= 1) is stable and either P(0) or P(2) does not hold, then P is stable.

Proof.

(i) Assume P is stable, (P ∨ (= 1))(m) and (P ∨ (= 1))(n). If m = 1, then
m + n − 1 = n and (P ∨ (= 1))(m + n − 1) holds; and similarly if n = 1.
Otherwise, both P(m) and P(n) hold, and (P ∨ (= 1))(m + n − 1) indeed
holds.

(ii) Assume P ∨ (= 1) is stable, P(m) and P(n) hold. Then (P ∨ (= 1))(m+n−1)
holds. Either P(m + n − 1) holds and we are done, or m + n − 1 = 1, hence
m = n = 1 and P(1) holds, because the case m = 0 and n = 2 is excluded.

2

Lemma 6.6 If P is stable and there exists n ≥ 2 such that P(n) holds, then there
exists q ≥ 1 such that P(1 + k · q) holds for every k ≥ 1.

Proof. With the notations of the lemma, let q = n− 1. We prove by induction on
k ≥ 1 that P(1 + k · q) holds. This is true for k = 1. Assume P(1 + k · q) holds,
n + (1 + k · q)− 1 = 1 + (k + 1) · q and P(1 + (k + 1) · q) holds, using Theorem 3.3.2

We now have everything in hand to exhibit a complete classification of the λP -
calculi.

Theorem 6.7 P is stable if and only of one of the following holds for all n:

(i) P(n)⇔ ⊥;

(ii) P(n)⇔ >;

(iii) P(n)⇔ (n = 0);

(iv) P(n)⇔ (n = 0 ∨ n = 1);

(v) there exist 0 ≤ p ≤ ω and 1 ≤ q1 < . . . < qp pairwise non divisible such that:
P(n)⇔ (∃k1, . . . , kp ≥ 0.n = 1 +

∑
1≤i≤p ki · qi);

(vi) there exist 1 ≤ p ≤ ω and 1 ≤ q1 < . . . < qp pairwise non divisible such that:
P(n)⇔ (∃k1, . . . , kp ≥ 0, 1 ≤ j ≤ p.kj ≥ 1 ∧ n = 1 +

∑
1≤i≤p ki · qi).

Moreover, this decomposition is unique.

Proof. If one of the cases (i–iv) holds, it has already been noted in Section 4 that
P is stable. If (v) or (vi) holds, this is a consequence of Theorem 3.3, similar to
Example 4.5. Conversely, suppose P is stable. We distinguish cases according to
whether or not P(0) holds.
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• If P(0) holds, does there exist n ≥ 2 such that P(n) holds ?
· If there is such a n, we are in case (ii), thanks to Proposition 6.4.
· If not, we are indeed in case (iii) or (iv).

• If P(0) does not hold, we look at P(1).
· If P(1) holds, we prove by induction on p ≥ 0 that there exist 1 ≤ q1 < . . . < qp

pairwise non divisible such that (∃k1, . . . , kp ≥ 0.n = 1+
∑

1≤i≤p ki ·qi)⇒ P(n).
This is true for p = 0. Assume this is true for some p, and consider the
smallest n not equal to (1 +

∑
1≤i≤p ki · qi) for some k1, . . . , kp ≥ 0 such that

P(n) holds. There are two cases. If there is no such n, that means that the
condition is verified and P is fully described. Otherwise, let qp+1 = n − 1.
Indeed, by construction, qp+1 > qp and none of q1, . . . , qp is a divisor of qp+1.
Thanks to Theorem 3.3 and in a similar way to Lemma 6.6, for all kp+1 ≥ 0,
P(1 + kp+1 · qp+1). Then, using again Theorem 3.3, the statement holds for
p + 1. If the process stops, the equivalence is clear. If it does not, let’s write
Pp(n) = (∃k1, . . . , kp ≥ 0.n = 1 +

∑
1≤i≤p ki · qi). For all p, Pp ⇒ Pp+1 ⇒ P

where the first implication is strict. The sequence (Pp)p is strictly increasing
and bounded, it thus has a limit Pω. There is no n such that P(n) but not
Pω(n), because this would contradict the construction. We conclude P ⇔ Pω.
· If P(1) does not hold, let’s consider the smallest n ≥ 2 such that P(n) holds.

If there is no such n, we are in case (i). Otherwise, we can proceed as in the
previous case, starting at p = 1, with q1 = n− 1, and obtain case (vi).

Unicity is clear: the different cases do not overlap, and in cases (v) or (vi), the
non-pairwise divisibility of q1, . . . , qp ensures that there is no redundancy. 2

Remark 6.8 Theorem 6.7 gives a complete classification of the stable λP -calculi
in terms of equality, but this is not necessarily the “best” description. For instance,
we have seen that (≥ 3) is stable, but its description using Theorem 6.7 is case
(vi) with p = ω and qi is the i-th prime number. In particular, it is not a finite
description.

7 Conclusion

We have defined and given a complete characterisation of a class of subsystems of the
λ-calculus taking into consideration the number of occurrences of variables, which
is a crucial issue for sharing. We recover well-known calculi such as λI or the linear
λ-calculus, but we also discover unconventional calculi whose interest as a compu-
tational model remain to study. Moreover, our characterisation is very algebraic
and may lead to a better understanding of the λ-calculus and its subsystems.

Acknowledgement

This article has benefited from comments by several anonymous referees.

References

[1] Barendregt, H. P., “The Lambda Calculus: Its Syntax and Semantics,” Studies in Logic and the
Foundations of Mathematics 103, North-Holland Publishing Company, 1984, second, revised edition.

111



TERMGRAPH 2007

Modeling and Verifying GraphTransformations in Proof AssistantsMartin Streker1IRITUniversit�e Paul Sabatier118 route de NarbonneF-31062 ToulouseAbstratThis paper takes �rst steps towards a formalization of graph transformations in a general setting of inter-ative theorem provers, whih will form the basis for proofs of orretness of graph transformation systems.Whereas graph rewriting is usually performed by mapping a pattern graph into a soure graph by means ofa graph morphism and then arrying out operations on the image node and edge set, this artile generalisesthe notion of pattern graph to path expressions, whih are formulae in a fragment of �rst-order logi. Weexamine the orrespondene with traditional graph rewriting and show that this interpretation is bene�ialwhen formally reasoning about model transformations with the aid of proof assistants.Keywords: Graph Transformations, Theorem Proving1 IntrodutionGraph rewriting examines whih strutural hanges are engendered when applyingrewrite rules to a graph. There is no unique approah to graph rewriting - one mayite algebrai [Bar03℄ and ategorial [CMR+96,EHK+97℄ formalisms.The disipline has aumulated an impressive amount of results on propertiesof rewrite systems (suh as onuene and termination) resulting from spei� ruleformats [Plu99℄. Reently, there is a growing pratial interest in graph rewritingin the ontext of model driven engineering, where a software or hardware artifat isrepresented graphially and an be re�ned or refatored by the appliation of graphrewriting rules. Several graph rewriting tools are available. They emanate fromfoundational work and are usually equipped with some analyses of rule properties[Tae03,KS06,Agr04℄, or take a more pragmati view (ATL [BBDV03℄ and Kermeta[MFV+05℄).In spite of a large body of work on graph transformations, the question of veri-�ation of transformations \in general" is far from settled. The foundational work1 Email: streker�irit.fr This paper is eletronially published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents
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Strekerof [Cou90℄ aims at a logial haraterization of graph transformations, where e�e-tive veri�ation of strutural properties is not a primary onern. Usually, however,graph transformation systems are pereived as extensions of term rewriting systems,so muh of the e�ort has gone into investigating spei� properties suh as onu-ene and termination [Plu99℄, whih does not neessarily allow to determine whethera graph has a ertain shape after transformation. These questions may be answeredfor graph replaement systems having a restrited struture [FM97℄, for proper-ties expressed in speialized logis suh as monadi seond order logi [KS93℄ ortype systems [BCE+05℄. There are automated approahes based on model heking[Var04℄, whih however an only handle graphs with an a priori bounded number ofelements. [RD06℄ presents tehniques for dealing with spei� strutural propertiessuh as multipliities.However, in some irumstanes, it is useful to resort to a more general setting,in order to express stronger properties or to overome limitations of a restrited ruleformat. This gives us the same kind of advantage a program logi may have overa stati analysis for determining the orretness of an imperative program { and itsu�ers from the same drawbaks, notably a sometimes heavy user intervention toarry out interative proofs.The veri�ation of strutural properties will be the main fous of this paper.The work reported here has grown out of an e�ort to formalise model transforma-tions in interative proof assistants. A �rst attempt [SG06℄, aiming at formalisingtraditional graph rewriting as skethed above, required omplex reasoning aboutgraph morphisms. It has turned out that replaing the pattern graph by formu-lae over graph struture (whih we will all path formulae in the following) yieldsmuh more manageable proof obligations. At the same time, path formulae aremore expressive than pattern graphs and have therefore an interest in their own,independently from onerns about formal veri�ation.Path formulae an be understood as formulae over a fragment of �rst order logi(possibly inluding transitive losure), whih are interpreted over graphs. Deter-mining whether a graph satis�es a path formula is deidable, whih is indispensablefor e�etively applying a transformation rule to a given graph. On the downside,validity of path formulae may not be deidable, so that interative proofs beomeneessary.The paper is strutured as follows: In Setion 2, we informally introdue gen-eralised graph transformations. The formal model is presented in Setion 3. InSetion 4, we show how we an reover the traditional model of graph rewriting.We take a glimpse at how to reason about graph transformations in a proof assistantin Setion 5 before onluding with an outlook on future work.2 Example TransformationsTo set the stage, we desribe two toy transformations: a transformation dupliatinga graph, and another one implementing a simple garbage olletor.The purpose of the graph dupliation transformation is to generate a new graphonsisting of two exat opies of the original graph. We assume that the originalgraph has nodes of type Node, with edges of type E between them. For the purposes113



Strekerof transformation, we need nodes of type Orig, supposed to mark the nodes of theoriginal graph during transformation, and edge types Or (between Orig and Node)and Cp (between a node and its original).Dupliation proeeds in several steps: First, we mark all nodes of the originalgraph with Orig nodes. We then reate a dupliate node for eah original, memoris-ing the relation between the original and the lone with a Cp edge. We an similarlyreprodue the edges of the original graph in the opy. All that remains to be donenow is to erase the auxiliary marking.
�!

Fig. 1. Dupliating a graphAn example graph and the result of its transformation, just before deletion ofthe Cp edges and the markers, is shown in Figure 1. This is a sreen shot of graphsprodued by the AGG tool [Tae03℄, based on a ategorial approah, whih allows toonveniently model this kind of transformation (a more detailed omparison followsin Setion 4).How do we formalise the marking phase, i.e. the �rst step of our transformation?In our setting, a transformation rule is omposed of two elements: an appliationondition and an ation part. The appliation ondition, a path formula F express-ing if and where a rule an be applied, says that the rule an operate on any noden of type Node whih is not already marked by some node m of type Orig:F (n) � Node(n) ^ :9m: (Orig(m) ^m Or�! n)Here, m Or�! n represents an Or edge between m and n.The ation part (not shown here) expresses what we do if F is satis�ed for anode n: We generate a new node, say m0, having type Orig, and we reate anOr-edge (m0; n). We will ome bak to this example in Setion 3.3.Of ourse, a single transformation step of this kind will not suÆe to mark allnodes of a graph. Rather, we have to iterate the rule until no further appliation ispossible, i.e. until F is false for all nodes of the graph. We will briey look at thisquestion in Setion 5.The garbage olletor is an example of a transformation that is not diretlyexpressible in traditional graph rewriting approahes. We assume to have a numberof Root objets and a number of Node objets. Root objets are linked to Nodesthrough rn edges, Nodes are linked among themselves through nn edges. Any Nodenot aessible from a Root is onsidered as garbage.The prediate G(n) saying that node n is garbage an be written as the pathformula G(n) � :9r n0: r rn�! n0 ^ n0 nn�!� n114



Strekerwhere rn�! is an rn edge (and similarly for nn), and the \star" is transitive losure.G(n) is the appliation ondition of a rule ollet, whose ation part just saysthat n should be deleted (in doing so, all adjaent edges disappear as well).In the ase ofG(n), we have hosen not to make the typing information expliit inthe rule itself. In fat, it an be dedued from general typing prediates, expressibleas path formulae, that ould form the \bakground theory" of the appliation. Forexample, the typing of the rn edge is stated as8r n: (r rn�! n) �! Root(r) ^Node(n)3 Formal ModelIn this setion, we formally present the basi notions of our graph rewriting ap-proah, notably graphs, graph transformations and morphisms and some well-formedness onditions we have to impose to ensure onsisteny of the model. Sineour development has been arried out in the Isabelle proof assistant [NPW02℄, wewill use Isabelle's syntax, whih we will explain wherever needed.3.1 GraphsOur purpose is not to formalize any partiular approah to graph rewriting, suh asthe one based on ategory theory. Our model is set-theoreti. Roughly, graphs areomposed of a �nite set of nodes, a �nite set of edges and a typing of the nodes.In order to reate new nodes during graph rewriting, we have to have an in�nitesupply of fresh nodes. We have therefore hosen to take the natural numbers asthe base type of our nodes. The edges are sets of pairs of nodes, indexed by anedge type 0et, suh as Cp and E in the introdutory example. This preludes to havemore than one edge of a given edge type between two nodes. However, under thisde�nition, one an more easily use standard relational operators like ompositionand transitive losure, whih omes handy when de�ning the semantis of pathexpressions further below. A node typing assigns a node type 0nt (suh as Root andNode) to eah node of the graph. Altogether, this gives the following de�nition ofthe type of graphs:reord ( 0nt; 0et) graph =nodes :: nat setedges :: 0et ) (nat � nat) setnodetp :: nat ) 0nt option(An option type T option has a distinguished value None, representing unde-�nedness, and de�ned values Some t for t and element of T.)In a minimalisti model, node typing is inessential, but it is useful for desribingsome strutural aspets of graphs. However, we have exluded more omplex nodeattributes that would be required for formalising the semantis of an artifat. Theyould be easily added by providing a mapping in the spirit of nodetp from the nodeset to an attribute domain.Finiteness of the node set is expressed by a strutural well-formedness prediate,just as the ontainment of the endpoints of edges in the node set and well-de�nednessof node typing: 115



Strekerstrut-wf-gr :: ( 0nt; 0et) graph ) boolstrut-wf-gr gr ==(�nite (nodes gr)) ^(8 et: (Field (edges gr et)) � (nodes gr)) ^dom (nodetp gr) = (nodes gr)Here, dom is the domain of a mapping, Field the union of the domain andrange of a relation. Aess to a omponent of a reord, suh as nodes, is written infuntional notation.3.2 Path expressionsThe appliation of graph transformations to a graph is subjet to an appliabilityondition. Traditionally, this appliability ondition is given in the form of a patterngraph whih is mapped, via a graph morphism, into a soure graph to whih thetransformation will be applied.In a �rst attempt [SG06℄, we have faithfully oded this approah, but it hasturned out that the formulae resulting from this graph mapping require onsiderablemassaging for being usable any further. We try to irumvent this problem byreplaing the pattern graph by a prediate on (soure) graphs, whih at the sametime opens up the possibility of expressing more general properties (we ome bakto this in Setion 4).However, we have to take are not to use too omplex prediates: The least wean expet from a graph rewriting engine is to be able to deide whether a prediateis satis�ed for a partiular graph and thus, whether a rule is appliable to this graph.Di�erently said, the model heking problem for the lass of prediates should bedeidable, even though entailment need not be, see Setion 5.In the following, we present a logi of path formulae, whih we have founduseful for expressing interesting properties (see the disussion in Setion 4). How-ever, there is no intrinsi reason to adopt preisely the language onstrutors wehave seleted, and the deidability of the logi, as well as the omplexity of modelheking, is greatly inuened by this hoie. Similar notions an be found in[YRS+06,KS93,Ren03℄To have a �ne ontrol over the logi of prediates on graphs, we deeply embedit into Isabelle's higher order logi. We start by de�ning node set expressions(representing sets of nodes) and path expressions (representing endpoints of paths):datatype 0nt nodeset= All-set | set of all nodes of graphj Type-set 0nt | set of all nodes of given typej Singleton-set nat | singleton ontaining onstantdatatype ( 0nt; 0et) path= Empty-pth | empty pathj Edge-pth 0et | edge with given edge typej InvEdge-pth 0et | inverse edgej Seq-pth ( 0nt; 0et) path ( 0nt; 0et) path | sequential ompositionj Alt-pth ( 0nt; 0et) path ( 0nt; 0et) path | alternativej Clos-pth ( 0nt; 0et) path | transitive losureBased on this, we de�ne path formulae, whih are onstruted from two baseases (set and path formulae, for node set and path expressions, respetively), andthe usual Boolean onnetives and quanti�ers:datatype ( 0nt; 0et) path-form= S-form 0nt nodeset nat | set formula 116



Strekerj P-form ( 0nt; 0et) path nat nat | path formulaj Neg-form ( 0nt; 0et) path-form | negationj Conj-form ( 0nt; 0et) path-form ( 0nt; 0et) path-form | onjuntionj All-form ( 0nt; 0et) path-form | universal quanti�ationWith the above, other onnetives and the existential quanti�er Ex-form an bede�ned as abbreviation. Universal quanti�ation does not use a named, but rathera positional representation of variables (de Bruijn indies, [dB72℄). Thus, variablesare not identi�ers, but just numbers.In our informal notation of Setion 2, we have written S-form (Type-set T ) nsimply as T (n) and P-form (Edge-pth e) n n 0 as n e�! n0. For instane, theappliation ondition :9r n0: r rn�! n0 ^ n0 nn�!� n of the garbage olletorexample of Setion 2 beomes:Neg-form (Ex-form (Ex-form(Conj-form(P-form (Edge-pth rn) 1 0 )(P-form (Clos-pth (Edge-pth nn)) 0 2 ))))The semantis of expressions respetively formulae is de�ned by means of fun-tions nodeset-interp, path-interp respetively path-form-interp that interpret theexpressions respetively formulae under a variable interpretation I : nat ) nat ina graph gr.onstsnodeset-interp :: [nat ) nat; ( 0nt; 0et) graph; 0nt nodeset℄ ) nat setprimrenodeset-interp I gr All-set = nodes grnodeset-interp I gr (Type-set t) = fn: nodetp gr n = Some tgnodeset-interp I gr (Singleton-set n) = fI ngonstspath-interp :: [nat ) nat; ( 0nt; 0et) graph; ( 0nt; 0et) path℄ ) (nat � nat) setprimrepath-interp I gr Empty-pth = diag UNIVpath-interp I gr (Edge-pth e) = edges gr epath-interp I gr (InvEdge-pth e) = (edges gr e)^�1path-interp I gr (Seq-pth p p 0) = (path-interp I gr p) O (path-interp I gr p 0)path-interp I gr (Alt-pth p p 0) = (path-interp I gr p) [ (path-interp I gr p 0)path-interp I gr (Clos-pth p) = (path-interp I gr p)^�onstspath-form-interp :: [nat ) nat; ( 0nt; 0et) graph; ( 0nt; 0et) path-form℄ ) boolprimrepath-form-interp I gr (P-form p n n 0) = ((I n; I n 0) 2 path-interp I gr p)path-form-interp I gr (S-form s n) = (I n 2 nodeset-interp I gr s)path-form-interp I gr (Neg-form pf ) = (: (path-form-interp I gr pf ))path-form-interp I gr (Conj-form pf pf 0) =((path-form-interp I gr pf ) ^ (path-form-interp I gr pf 0))path-form-interp I gr (All-form pf ) =(8 x : x 2 nodes gr �!path-form-interp ((I o (� x : x � 1 ))(0 :=x)) gr pf )In the above, UNIV is the set of all elements (of the given type), diag thediagonal of a set (the relation (e; e)), the onverse of a relation R is written R^�1,and O is relation omposition and Æ funtion omposition.Model heking of node set and path expressions, i.e. heking that a graphgr satis�es a node set or path expression, reposes on well-known graph algorithms.Universal quanti�ation is relativised to the node set of the graph, whih is �niteby well-formedness of graphs. Therefore, heking a universal formula only has toexamine a �nite number of elements. 117



Streker3.3 Graph TransformationsRoughly speaking, a graph transformation rule should speify under whih onditionthe transformation is appliable, and what to do when applying the transformationat a position in a soure graph to obtain a target graph.The appliability ondition is just given by a path formula, as outlined in theprevious setion. Note that this path formula may ontain free variables, for examplen in G(n) of Setion 2, whih an be understood as referenes to nodes in the souregraph. Of ourse, in its oding as path formula, the free variables are numbers.It is these numbers that we refer to when speifying the ation: we say whihnodes are to be deleted respetively freshly generated (ndel resp. ngen) and whihedges are deleted resp. generated (edel resp. egen). Furthermore, we have to knowhow to type the newly generated nodes. Altogether, graph transformations havethe form:reord ( 0nt; 0et) graphtrans =| appliability onditionappond :: ( 0nt; 0et) path-form| mapping of nodesndel :: nat set | deleted nodesngen :: nat set | generated nodes| mapping of edgesedel :: 0et ) (nat � nat) set | deleted edges, indexed by typeegen :: 0et ) (nat � nat) set | generated edges, indexed by type| typing of generated nodesngentp :: nat ) 0nt optionFor example, the marking rule of Setion 2 an now be expressed by the trans-formation:mark :: (nodetp; edgetp) graphtransmark ==(j appond = mark-F 0 ;ndel = fg;ngen = f1g;edel = � et: fg;egen = (� et: fg)(Or :=f(1 ;0 )g);ngentp = [1 7! Orig℄j) Here, mark-F is the oding of the appliation ondition. The appliation positionof the rule is node 0. No nodes and edges are deleted, a node numbered 1 is generatedand an Or edge is added between node 1 and 0. (The syntax for update of funtionf at x with value y is f (x :=y).)For graph transformations to make sense, the referenes to nodes to be deletedhave to be among the referenes to nodes in the appliability ondition (thus, to thefree variables of the appliability ondition), whereas referenes to generated nodesshould not our in the appliability ondition. We only generate a �nite numberof nodes in eah transformation step, and to all of these nodes we assign a type.Similar onstraints hold for deleted and generated edges. To summarise, struturalwell-formedness of a graph transformation is expressed by the following prediate:strut-wf-gt :: ( 0nt; 0et) graphtrans ) boolstrut-wf-gt gt ==(ndel gt) � (fv-path-form (appond gt)) ^�nite (ngen gt) ^ (fv-path-form (appond gt)) \ (ngen gt) = fg ^dom (ngentp gt) = (ngen gt) ^(8 et: Field (edel gt et) � (fv-path-form (appond gt))) ^(8 et: Field (egen gt et) � ((fv-path-form (appond gt)) � (ndel gt)) [ (ngen gt))118



Streker3.4 Applying Graph TransformationsWe now ome to the appliation of a graph transformation to a soure graph at apartiular position. In graph rewriting, mathing a pattern graph to a soure graph(and thus determining the appliation position) is traditionally ahieved with theaid of a graph morphism. We adopt the same terminology and de�netypes graphmorph = (nat ) nat option)with the understanding that the node referenes ourring in a graph transfor-mation rule are mapped to the nodes in a soure graph. For the \garbage olletion"example, suh a situation is depited in Figure 2.
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Strekerlet gen-nodes = gt-gen-nodes gr gt inlet morph-gen = separ-map (ngen gt) (nodes gr) inlet morph- = gm ++ morph-gen inlet nds = ((nodes gr) � del-nodes) [ gen-nodes inlet del-edges = (� et: (indued-emorph gm) ` (edel gt et)) inlet gen-edges = (� et: (indued-emorph morph-) ` (egen gt et)) inlet tp-ngen = ((ngentp gt) Æm (inv-m morph-gen)) in(j nodes = nds;edges = � et: (restrit-rel ((edges gr et � del-edges et) [ gen-edges et) nds);nodetp = (restrit-map ((nodetp gr) ++ tp-ngen) nds)j)In the above, f ` S is the image of set S under funtion f, and m j` S restritsmap m to S. In m1 ++ m2, map m2 overrides m1, and Æm is the omposition ofmaps.3.5 Appliability of Graph TransformationsWhat we have alled \graph morphisms" in Setion 3.4 is essential for determiningwhether a transformation is appliable, and if yes, where to apply it. It shouldbe emphasised again that \graph morphism" is a slight misnomer, beause we donot map graphs into graphs, as in traditional graph rewriting. Rather, we want toverify that the appliability ondition of a transformation rule is true.The following prediate states that a graph morphism gm satis�es a path formulapfs in a graph grt :appliable-gm :: [graphmorph; ( 0nt; 0et) path-form; ( 0nt; 0et) graph℄ ) boolappliable-gm gm pfs grt ==(dom gm = fv-path-form pfs) ^ (ran gm � nodes grt) ^path-form-interp (the o gm) grt pfsThe domain of the graph morphism has to be the set of free variables of thepath formula, and its range has to be a subset of the nodes of the graph. Mostimportantly, the path formula has to be satis�ed in the graph when interpreting itsfree variables by the graph morphism in the given graph. (the is the left inverse ofSome, thus the (Some x ) = x ).In most of our reasoning, we want to abstrat away from partiular graph mor-phisms and just say that a transformation is appliable in a graph:appliable-transfo :: [( 0nt; 0et) graphtrans; ( 0nt; 0et) graph℄ ) boolappliable-transfo gt gr == 9 gm: appliable-gm gm (appond gt) grNow, applying a graph transformation to a graph amounts to seleting an arbi-trary graph morphism and applying it to the graph:apply-transfo :: [( 0nt; 0et) graphtrans; ( 0nt; 0et) graph℄ ) ( 0nt; 0et) graphapply-transfo gt gr ==apply-graphtrans gt (SOME gm: (appliable-gm gm (appond gt) gr)) grHere, SOME is Hilbert's hoie operator whih ould be replaed by a onstru-tive hoie based, for example, on a node ordering.3.6 Properties of Graph TransformationsWe an now state a major result: appliation of well-formed graph transformationsto well-formed graphs yields again well-formed graphs:strut-wf-gr gr ^ strut-wf-gt gt �! strut-wf-gr (apply-graphtrans gt gm gr)This an be onstrued as a generi invariant of graph transformations that neednot be reproved for eah transformation rule when reasoning about graph transfor-120



Strekermation programs (see Setion 5). Note that the strutural well-formedness of theresulting graph depends on the well-formedness of the graph transformation gt, butis valid for arbitrary graph morphisms gm.In [SG06℄, we have shown that for traditional graph rewriting, we an similarlyensure preservation of well-typing. In our urrent setting, we an express moregeneral typing properties than those examined in [SG06℄, for example ardinal-ity onstraints, so that \typing" in full generality beomes undeidable. We areurrently exploring fragments of our path logi that permit suÆiently interestingtyping properties to expressed and preservation of typing to be proved.
4 Correspondene with Graph RewritingIn the following, we will argue that transformations expressible in traditional graphrewriting approahes an be oded in our system. It is therefore possible to \om-pile" traditional graph rewriting rules to expressions involving our path formulae.It is then possible to use the tehniques desribed in Setion 5 as a veri�ationbakend.In the rules of the AGG system [Tae03℄, for example, there are positive andnegative appliability onditions, and eah suh ondition is a graph that has toour, respetively must not our, in the graph where the rule is applied. As seenin Setion 2, we an ode positively ourring graphs by a onjuntion of node setand path onstraints, more preisely� a node set onstraint T (n) for every node n of type T in the graph� a path onstraint n e�! n0 for eah edge e in the graph.As mentioned before, we do not allow multiple edges of the same edge type betweena pair of nodes. We do not see that as a major drawbak { if neessary, edges anbe \rei�ed" by introduing a node representing the edge.For negative appliability onditions, we proeed in an analogous manner, withthe di�erene that the nodes of the graph are asserted not to exist. Thus, foran edge e ourring in a negative appliability graph, we have a path formula:9n n0:n e�! n0.TheGReAT language [AKK+05℄ inludes, among others, ardinality onstraints.It is thus possible to speify that a node n must (or must not) have k outgoinge-edges. Cardinality onstraints are not present as primitive onstruts in our lan-guage, but they an be oded by a shema likeCk(n) � 9x1 : : : xk: n e�! x1 ^ : : : n e�! xk ^ distint(x1; : : : xk)where distint(x1; : : : xk) is the onjuntion :(xi = xj), for i; j 2 f1; : : : ; kg; i 6= j.The fat that the graph morphisms between a pattern and a soure graph isinjetive is usually an external notion in traditional graph rewriting. In a similarspirit as the above formula, we an internalise this notion and express that thenodes a rule is applied to are distint. 121



Streker5 Reasoning about Graph TransformationsAs mentioned in Setion 2, it is not suÆient to apply a transformation rule one.Rather, one has to apply a rule repeatedly, or several rules have to be appliedin a spei� order. Most graph rewriting tools permit to iterate rule appliation,often by dividing the tool set into \layers". The need for exerting �ner ontrol ongraph transformations has been reognised, among others, by the developers of theGReAT language, who develop a graphial language inluding onditional and looponstruts [AKK+05℄.We are urrently developing a simple language for writing graph transformationprograms and reasoning about them. The language is not suÆiently polishedto present details, so we just give a sketh and desribe how we might treat the\marking" example of Setion 2.The language is omposed of statements stmt, among whih we only mentionDo and Loop. An operational semantis desribes how a state is modi�ed by theseonstruts. We distinguish between suess and failure states. In our ase, a \state"is just a graph with a \suess" or \failure" tag. The meaning of the mentionedonstruts is then:� Do b f heks whether ondition b is satis�ed in the urrent state s. If this isthe ase, funtion f is applied to s to produe a suess state s0. Otherwise, s isreturned as a failure state.� Loop  applies statement  inde�nitely often, until winding up in a failure state,whih is the result of the loop.Let us introdue the following abbreviation:App :: ( 0nt; 0et) graphtrans ) ( 0nt; 0et) graph stmtApp gt == Do (� s: appliable-transfo gt (outome-val s))(� s: apply-transfo gt (outome-val s))Here, outome-val disards the suess / failure tag of a state. Consequently,App applies a graph transformation, if possible, and returns the urrent state asfailure state otherwise.The marking phase of the introdutory example an now be written as theprogram Loop (App mark), where we use the de�nition mark of Setion 3.3. Theentire graph dupliation transformation onsists of a sequene of suh loops, eahwith a di�erent rule.The language omes equipped with a Hoare-style program logi. We write W `fPg  fQg to express that statement  establishes the postondition Q providedthe preondition P and some invariant well-formedness onditions W hold. Wis typially the prediate strut-wf-gr that we have shown to be invariant underappliation of graph transformations in Setion 3.6. Furthermore, the statement usually ontains annotations orresponding to loop invariants.Suppose we want to show, for our example program, that all nodes of type Nodeare orretly marked, i.e. have exatly one inoming Or edge, provided that in theoutset, these nodes had zero or one inoming Or edges. Let us �rst de�ne nset asthe set of nodes in a graph having a given node type:nset :: [( 0nt; 0et) graph; 0nt℄ ) nat setnset gr nt == fn 2 nodes gr : (nodetp gr n) = Some ntg122



StrekerWe an now state the preondition:8 x2nset gr Node: ard ((edges gr Or)�1 `` fxg) � 1(here, R `` S is the image of a set S under a relation R, and ard the ardinalityof a set). The postondition is similar, with the inequality replaed by an equality.The veri�ation ondition generator leaves us essentially with two goals: showingthat the loop invariant is preserved if the rule mark is appliable, and showing thatthe postondition is satis�ed if the rule is not appliable. We just look at the latterase.So assume that : appliable-transfo mark gr. Aording to the de�nition ofappliable-transfo, this is equivalent to 8 gm: : appliable-gm gm (appond mark)gr, whih ontains an annoying seond-order quanti�er over a graph morphism gm.However, when looking at the de�nition of appliable-gm, we realise that thedomain of gm is �nite - it is just the set of free variables of the appliation onditionof mark. We now apply repeatedly the following lemma:lemma dom-redue-insert:(dom gm 0 = insert a A) =(9 b gm 00: gm 0 = gm 00(a 7!b) ^ gm 0 a = Some b ^ dom gm 00 = A)whih gradually redues the domain of the morphism gm 0 and instead introduesa �rst-order quanti�er b, so that we are eventually left with the hypothesis8n: n 2 nodes gr �! nodetp gr n = Some Node�! (9 x : nodetp gr x = Some Orig ^ (x ; n) 2 edges gr Or)whih naturally desribes the non-appliability of the rule and eventually permitsto prove the required ardinality property.6 ConlusionsIn this paper, we have presented �rst steps towards the veri�ation, in an interativeproof assistant, of strutural properties established by graph rewriting systems. Atthe same time, the path formulae we have introdued give an alternative view onappliability onditions for graph rewriting rules, that may pro�tably be used ingraph rewriting systems.Our path formulae are very expressive, whih has the downside of leading, ingeneral, to undeidable veri�ation problems. As we want to redue the amount ofhuman proof e�ort as muh as possible, we intend to address this topi in futurework, by developing speialized analyses for fragments of our logi. In fat, our pathformulae resemble path expressions used in shape analysis for pointer programs[YRS+06,KS93℄, other subsets have been identi�ed in the ontext of desriptionlogis [GM05℄. A detailed omparison of these approahes still has to be done.AknowledgementThis work has been strongly inuened by suggestions from Jean-Paul Bodeveixand Mamoun Filali and disussions with Louis F�eraud, Ralph Matthes, Mar Pan-tel, Maxime Rebout and Sergei Soloviev. Mathieu Giorgino has elaborated severalexample transformations. 123
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