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Preface

The Fourth International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2007) was held in Braga, on Saturday 31 March 2007, as a
satellite event of the 10th European Joint Conference on Theory and Prac-
tice of Software (ETAPS 2007). The first TERMGRAPH workshop took place
in Barcelona, in 2002, as a satellite event of the International Conference on
Graph Transformation (ICGT), the second TERMGRAPH workshop took place
in Rome 2004, also as a satellite event of ICGT, and the third in Vienna, as a
satellite event of ETAPS 2006.

The advantage of computing with graphs rather than terms is that com-
mon subexpressions can be shared, improving the efficiency of computations
in space and time. Sharing is ubiquitous in implementations of programming
languages: many functional, logic, object-oriented and concurrent calculi are
implemented using term graphs. Research in term and graph rewriting ranges
from theoretical questions to practical implementation issues. Different research
areas include: the modelling of first- and higher-order term rewriting by (acyclic
or cyclic) graph rewriting, the use of graphical frameworks such as interaction
nets and sharing graphs (optimal reduction), rewrite calculi for the semantics
and analysis of functional programs, graph reduction implementations of pro-
gramming languages, graphical calculi modelling concurrent and mobile com-
putations, object-oriented systems, graphs as a model of biological or chemical
abstract machines, and automated reasoning and symbolic computation systems
working on shared structures.

The aim of this workshop is to bring together researchers working in these
different domains and to foster their interaction, to provide a forum for present-
ing new ideas and work in progress, and to enable newcomers to learn about
current activities in term graph rewriting.

Topics of interest include all aspects of term graphs and sharing of com-
mon subexpressions in rewriting, programming, automated reasoning and sym-
bolic computation. This includes (but is not limited to): term rewriting, graph
transformation, programming languages, models of computation, graph-based
languages, semantics and implementation of programming languages, compiler
construction, pattern recognition, databases, bioinformatics, and system de-
scriptions.

For TERMGRAPH 2007, the Programme Committee selected 10 papers for
inclusion in these proceedings, covering a wide range of the topics.

The Programme Committee consisted of:

e Zena Ariola, University of Oregon, USA
e Andrea Corradini, University of Pisa, Italy

e Maribel Fernandez, King’s College London, UK

Bernhard Gramlich, Vienna University of Technology, Austria

Annegret Habel, University of Oldenburg, Germany

iii



e Claude Kirchner, INRIA & LORIA, Nancy, France

e Jean-Jacques Lévy, INRIA, Rocquencourt, France

e Tan Mackie, King’s College London & Ecole Polytechnique (Co-Chair)
e Aart Middeldorp, University of Innsbruck, Austria

e Ugo Montanari, University of Pisa, Italy

e Jorge Sousa Pinto, University of Minho, Braga, Portugal

o Detlef Plump, University of York, UK (Co-Chair)

e Arend Rensink, University of Twente, The Netherlands

We would like to thank all those who contributed to TERMGRAPH 2007.
We are grateful to the Programme Committee members for their careful and
efficient work in reviewing the submitted papers and selecting the workshop
programie.

Tan Mackie and Detlef Plump

1 March 2007
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Term-graph rewriting in TOM
using relative positions

Emilie Balland and Paul Brauner

UHP & LORIA, INPL & LORIA
Campus Scientifique, BP 239,
54506 Vandeeuvre-les-Nancy Cedex France

Abstract

In this paper, we present the implementation in ToM of a de Bruijn indices gen-
eralization allowing the representation of term-graphs over an algebraic signature.
By adding pattern matching and traversal controls to JAvVA, ToM is a well-suited
environment for defining program transformations or analyses. As some analyses,
e.g. based on control flow, require graph-like structures, the use of this formalism
is a natural way of expressing them by graph rewriting.

Key words: term-graph,rewriting,strategic programming

1 Introduction

Program transformation and graph rewriting are strongly related [10]. Indeed,
although the structure of a program may be represented by a tree, informa-
tions about its execution like data dependencies or control flow are naturally
expressed by data-structures inherently using cycles or subterms sharing, in
other words by graphs. More precisely, since these graphs are oriented and la-
belled over an algebraic signature, such transformations are described within
the framework of term-graphs [13]. There exists several definitions of term
graph rewriting, category-theory oriented [7,11], equationally oriented [2] or
implementation-oriented [3].

Since 2001, the Protheo team has been developing the ToM system [12],
whose main originality is to be built on top of an existing language JAVA. ToM
provides pattern matching facilities to inspect objects and retrieve values.
Moreover, the rewriting steps can be controlled using a powerful strategy
language. The main application of the language being program transformation
and code analysis, we were interested in extending the ToMm language for
supporting term-graph transformations.

In this paper, we introduce the notion of relative position inspired from the
de Bruijn indices as a way to express paths between two subterms. Then we

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



BALLAND AND BRAUNER

present an implementation of term-graphs based on this formalism. As Towm
provides rewriting strategies, integrating such structures in the language offers
strategic graph rewriting for free. After introducing the notion of relative
positions, we will explain how the language can be extended to offer facilities
for strategic graph rewriting. Finally, we will illustrate the use of this extension
by an implementation of lambda-calculus normalization.

2 Term-graph representation

Our goal is to represent term-graphs on top of the term rewriting theory
with the fewest possible modifications to this formalism to take advantage of
the existing results (confluence, termination) and tools, namely Tom. The
main idea of this paper is to raise the notion of position to the level of first-
order terms by extending algebraic signatures with an infinite set of constants
representing positions. This allows for the description of terms containing
some “pointers” to subterms of themselves. As an example, the term s(a, 1)
defined over such a signature denotes a term whose second child references the
first-one.

The main issue of this representation is that it is context-sensitive. For
instance, the position 1.1 references the subterm a in f(s(a,1.1)), but s(a, 1.1)
in f(f(s(a,1.1))). This raises the idea of relative positions describing paths
inside a term to the referenced subterms. The previous example would then
be written f(s(a,—1.1)), where —1 indicates one backward step inside the
term. This can be seen as a generalization of de Bruijn indices extended to
the count of all function symbols, not only abstractions.

In this section, we define more formally this notion of relative position
and terms with references before we present an implementation aimed to be
used by Tom. We finally discuss the relation between this formalism and
term-graphs as well as the associated technical solution.

2.1 Terms with references

As usual, a position is a finite sequence of natural numbers. The subterm u
of a term ¢ at position w is denoted #|,,, where w describes the path from the
root of t to the root of u. To emphasize the difference with relative positions,
we will sometimes refer to positions as absolute positions.

Let us first define relative positions along with their meaning.

Definition 2.1 (Relative position) The set Rpos of relative positions is
the monoid (Z*,.) with neutral element A where Z* = Z \ {0}.

/

', ...the elements of Rpos.

We note n, p the elements of Z* and w,, w

Definition 2.2 (Referenced subterm) Given an absolute position w and
a relative position w,, the absolute position accessed by w, from w is written
pos(w,w,) and is defined as follows:
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e ifw, = A, then pos(w,w,) = w
o else, there exists p € Z* and w.. € Rpos such that w, = p.w. and
- if p >0, then pos(w,w,) = pos(w.p,w..)
- if p < 0 and if there exists W' and W" such that w = W' .W" and |w
then pos(w, w,) = pos(w',wl)

//| _

—-p,

It is undefined everywhere else.
We note t), ., the term tposww,) for every w and w, such that pos(w, w,)
and tipos(ww,) are defined. We name it the subterm of t referenced by w, from w.

Intuitively, w, describes a path back and forth inside ¢ from w to t,.,. For
example, the relative positions —1.1 and —2.1.2. — 1.1 reference the same
subterm a of f(s(a,b)) from the position 1.2.

We can now define the notion of first-order terms with references. It only
consists in extending an algebraic signature with an infinite set of constants
denoting relative positions.

Definition 2.3 (Term with references) For every set of first-order terms
T(F,X), the corresponding set of terms with references T,.;(F, X) is the set
7 (F U Rpos, X) where elements of Rpos have arity 0.

As an example, f(s(a,—1.1)) is a term with references of Z,.¢({f,s,a},0).
By abuse of notation, we will say that “—1.1 references a in f(s(a,—1.1))”",
without specifying it occurs at position 1.2.

Problems will inevitably occur when considering undefined relative posi-
tions. We define therefore validity as follows.

Definition 2.4 (Term with references validity) A term with references
t € Toep(F, X) is valid if for every leaf w, = t|,, such that w, € Rpos, t|,., s
defined and is not in Rpos.

Notice that we forbid relative positions referencing relative positions.

2.2 Implementation of terms with references

Let us now see how this formalism can be transposed to the ToM language.
One characteristic of TOM is its data-structure independence. A term can be
represented by any JAVA object as long as the user provides a mapping to see
these objects as trees. For easier development, it comes up with a language
called GoM [14] which automatically generates from a signature the JAvA
implementation and the mapping. The resulting implementation is efficient
in space and time (constant time terms equality test) because of maximal
subterm sharing. Readers must pay attention to the difference between the
maximal sharing and the notion of sharing in term-graphs. In our case, the
maximal sharing is only at implementation level and does not lead to sharing
at the term level. A GOM signature contains sorts and their constructors.
For example, the signature below defines two sorts A and B along with their

3



BALLAND AND BRAUNER

constructors.

A =a(Q) B = g(4)
| £(A)
| s(A,A)

With this signature, we can construct the terms a(), £(a()) or g(f(a()))
for instance. Our goal is to generate an extended signature for terms with
references from an initial GOM one. To achieve this, for every sort T of a GOM
module, we generate a new constructor of rank posT(int*). The notation *
is the same as in [4, Section 2.1.6] and can be seen as a family of constructors
with arities in [0, 00[. The previous example is extended in this way:

A=al() B = g(h)
| £(A) | posB(int*)
| s(A,A)
| posA(intx*)

As an example, we can now build the extended term s(—1.2.1, f(a)) with the
following syntax: s(posA(-1,2,1),f(a())). Then posA(-1,2,1) references
a() in the term s(posA(-1,2,1),f(a())).

This type of terms with references using explicit relative positions consti-
tutes a first extension of a GOM signature. In order to ensure type-preservation
and reference correctness, a second representation level consists in expressing
references with the help of labels. This notion of labelling can be seen as
an implementation of the addressed terms presented in [5]. We have added
new constructors to facilitate the use of labels and functions to transform a
term with labels into the low-level representation. For every sort T, we gen-
erate two constructors. The constructor 1abT(String,T) enables the user to
label a term with a string and refT(String) to reference a labelled term.
Thus the term s(refA("1"),f(labA("1",a()))) corresponds to the low-
level term s(posA(-1,2,1),f(a())). This notion of labels can be seen as
syntactic sugar for hiding positions to users in order to avoid bad manipula-
tions. Thereby, the constructors posT should be private so that users can only
construct terms with references by label usage. We provide functions which
generate the corresponding low-level terms after verifying that each refT cor-
responds to a labT of identical sort. This transformation is itself described
using strategic rewriting introduced in section 4.

2.3  Correspondence with term-graphs

Let us see now how a representation of cyclic term-graphs (in the sense of [2]
for instance) can be obtained from the terms with references introduced above.
For example, the term-graph rooted by s whose two children correspond to the
shared subterm a may be represented by s(a, —1.1). It may also be represented
by s(—1.2,a) though, so we need to define canonical forms. Moreover, we
noticed that several relative positions may reference the same subterm from a

4
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given position. Hence, we define canonical relative positions.

Definition 2.5 (Canonical relative position) Let wy,ws be two abso-
lute positions, the canonical relative position cpos(wi,ws) from wy to
wy 18 the smallest relative position with respect to the length such that
pos(wy, cpos(wy,ws)) = ws.

Let us remark that cpos(wy,ws) = q.w’ where ' € (N*.) and ¢ € Z*U{A}.
We can now define the canonical form of terms with references using an order
on absolute positions.

Definition 2.6 (Canonical term with references) Let w; = nj.wj or A
and wy = ng.why or A be two different absolute positions,

w1 = A
W) <qWs <= § or ni <ng
or np=ny and wy <q wh

A term t with references is then canonical if and only if t is valid and for every
leaf w, = 1|, such that w, € Rpos, w, is canonical and pos(w,w,) <q w.

Typically, contrary to s(—1.2,a), the term s(a, —1.1) is a canonical represen-
tation of a term-graph.

The formalism presented all along this section has been implemented
through a plugin for GOM which generates an extended signature with new
constructors for positions and construction functions which offer different
levels of abstractions (from terms with explicit positions to term-graphs
with labels). As illustrated by the Figure 1, a user may provide a labelled
representation which is not a canonical form and use the provided con-
struction function to normalize it. Whatever the favored level of the user,

labA

3 ¥
N 7\,
)] /N A

f f refA  labA [ refA
| | /N
a a ”lg” ”» lg” f a ll

!

Fig. 1. An example of term-graph and its representation as a labelled term.

the in-memory representation is always based on explicit relative positions.
Moreover, due to GOM design and in particular to the maximal sharing,
the efficiency in time and space is ensured. For example, the term-graph

5
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presented Figure 1 is automatically translated during the construction into
the low-level term with positions depicted in Figure 2. The principle of
maximal sharing is also illustrated by a schematic representation of the heap.

S/S\S
ANA

f posA f posA posA DosA

LT A

Fig. 2. Generation of relative positions from the labelled representation and maxi-
mal subterm sharing in memory.

After defining terms with references rewriting, we will exhibit in the next
two sections how the ToM language offers strategic rewriting of these struc-
tures.

3 Term-graph matching

The originality of the previous approach is that pattern matching on terms
with references built upon 7 (F,X) is simply defined as pattern matching
on terms of 7,..;(F,X). There is therefore no need to extend the notion
of rewriting, which allows us to reuse existing results and rewriting tools.
However, the questions raised by this formalism are situated at another level:
we would like the rewrite system to rewrite only valid terms. Giving some
non-trivial criterion on rewrite rules implying this property remains an open
question for the moment. The next sections of this paper therefore focus on
technical aspects of the pattern matching problem implementation.

After introducing the ToMm language, we discuss various presentations of
graph with references rewriting in this system. Although we cannot statically
check that patterns ensure the validity of matched terms, we also propose
several solutions to check this property at runtime.

3.1 'Towm pattern matching

The first mechanism offered by the ToMm language is pattern matching on al-
gebraic terms. This feature is similar to the constructs proposed by functional
languages like OCaml or Haskell. It is enabled by the %match keyword which
allows us to match a subject against some pattern and to get the values of the
pattern variables into JAVA ones:

A term = ‘s(f(a()),a));
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Ymatch(term) {

s(x,y) > {
System.out.println(
"First child: " + ‘x + ", second child: " + ‘y
);
return ‘f(x);
}
}

A subject is then any JAVA object which is an instance of a class whose
description has been provided to TOM via a mapping. This mapping indicates
to the ToM compiler how to match some class against a pattern, and how
to create new algebraic terms implemented by this class via the ¢ construct.
Here we are using the classes generated by GoM along with their mappings.
Towm also supports associative matching, a.k.a. list matching, as well as anti-
patterns [9] and non-linear matching.

Let us elaborate on the mapping mechanism. It provides an algebraic view
of some JAVA object (e.g. seeing integers as Peano natural numbers, or seeing
an XML tree as a term). It is divided into two parts: the destructive part and
the constructive one. The destructive part is used by the matching algorithm
and its main function is to describe how to query a term about its head symbol
and how to get its n** child. For instance, the mapping between integers and
Peano naturals would be similar to the following schematic code:

is_zero(n) {n==071%
is_successor(n) {n>01%}
get_successor_child(n) {n-11}

On the other hand, the constructive part is used by the compiler to build an
algebraic term. It usually consists in calling the constructor of the JAVA class
implementing the term. Although our goal is to work as much as possible
on top of classes and mappings generated by Gom, we will punctually adapt
some mapping to our needs.

3.2 Matching terms with references

Given these language constructs and the terms described in Section 2.2, there
are many ways to express matching against patterns with references. As
for term construction, patterns can be expressed at low-level using directly
positions or by a syntax based on labelling. In each case, it refers to a
stated subterm whose position is well-known. To compare two references by
value instead of references, we will introduce a deref operator in patterns
implemented using TOM mappings.

The simplest way to handle GOM terms with references is to consider the
extended signature and perform some standard pattern-matching on it. Since

7
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the posT(int*) constructors generate matchable terms, it is possible to write
patterns where relative positions are explicitly given. As an example, the
term represented Figure 3 matches against the pattern s(a(),pos(-1,1)).
Notice that this type of pattern denotes exactly the structure of the term: e.g.
s(pos(-1,2),a()) would not match the same term. This method allows us
to match against any position, even those pointing to an upper term as shown
Figure 4. This may still be relevant in case of a procedure carrying some

N\
-/

Fig. 3. s(a(Q) ,pos(-1,1))

Fig. 4. £(pos(-n,...)

contextual information or fetching the position to perform some computation
later. It may also be useful to compare two positions without knowing the
value of the subterms they are referencing. Figure 5 illustrates this situation.
Notice however that this is only possible if the two variables have the same
height in the term, as we are comparing relative positions.

i

Fig. 5. s(x,%) Fig. 6. £(pos(-n,...)

This first simple manner of matching graphs with references presents two
issues: the main one, depicted by Figure 6, is that a relative position may be
undefined. These patterns should therefore be considered as a kind of unsafe
assembly language for matching terms with references. The second one is
that the explicit notation of positions is not mandatory and may be easily
avoided with some syntactic sugar.

Thereby we propose to slightly modify the ToM compiler to address them.
The first change consists in integrating labels capturing and denoting positions
of subterms into the patterns syntax in order to avoid any explicit position
matching. As an example, the term represented in Figure 3 would match
against the pattern s(x:a(),x). The translation of this kind of patterns to
the former one is trivial: each occurrence of a label lab is replaced by the
relative position from its position to the position of the subterm labelled by
lab.
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The second modification aims at reinforcing the patterns safety. As
explained in section 2.2, we do not want the user to be able to recover
a position by matching the term of figure 3 against s(_,x) for instance.
This can be achieved by inhibiting the generation of mappings for position
constructors, so that the matching algorithm fails on such patterns. Another
less restrictive way of dealing with the undefined relative positions problem
would be to have the patterns similar to s(_,x) match only valid terms.
This could be achieved by checking at runtime that every relative position in
x references an accessible term. This is easily done with the help of strategies
presented in section 4. In both cases, we cannot avoid some modifications of
the pattern-matching algorithm, thus of the compiler.

The two previous kinds of patterns focus on the positions themselves as
matchable objects. Another approach would be to have the patterns express
constraints about the value of the referenced subterms. The mapping mecha-
nism presented in Section 3.1 offers the necessary features to achieve this via
the writing of an ad hoc destructor. We wrote this deref destructor which
acts like a proxy between the pattern matching algorithm and the destructor
of the value referenced by a position. As an example, the term represented by

S a/S\S

a/ \s / \
N |
A
Fig. 7. deref (a()) ambiguity

Figure 3 matches against the pattern s(a() ,deref(a())). It is important
to note that the patterns are now an abstraction of the term so we do not
match the graph structure anymore. For instance, the two terms of Figure 7
match against the same pattern s(a,s(f(deref(a())),_)). In particular, it
is not possible anymore to use non-linear pattern matching in order to check
that two positions are referencing the same sub-term, as depicted by Figure 8
which shows the ambiguity of the s(s(deref(x),deref(x)),_) pattern.
Again, matching terms with references in this way is not safe. Indeed the
subject may contain positions referencing terms above its root. However
this time, checking the validity of a term does not require any change to the
compiler since the test can be transfered to the destructor. The latter aborts
the matching process by returning false if accessing the pointed term raises
an exception.
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s
s
/s\/ N\ VaN
%A
Fig. 8. deref(x) ,deref (x) ambiguity

3.3  Matching term-graphs

Contrary to GOM terms with references, the usual term-graph definition does
not differentiate two types of children. Therefore, it may be convenient to have
the patterns s(x:a() ,x) and s(x,x:a()) match either s(a() ,pos(-1,1)) or
s(pos(-1,2),a()). The normal form mentioned in Section 2.2 enables such
a feature: it is sufficient to maintain normalization of both terms at runtime
and patterns at compile time to ensure this behavior. It requires some minor
changes of the ToM compiler though.

As recalled in Section 2.2, one main application of term-graphs is the
representation of subterms sharing in the purpose of gaining space and com-
putation time. However, this structure (the sharing) does not reflect the
structure of the represented term (typically a A-term) and it is therefore de-
sirable to manipulate it modulo this encoding. The basic idea is to interweave
deref constructors inside the patterns, so that s(a(),a()) is translated into
deref (s(deref(a()) ,deref(a()))) and thus matches the graph of figure 3.
It only requires to confer some lazy behavior to the deref destructor, which
should act as if not existing in case of a direct subterm (not a position).

Even if the classical [3] representation of term-graphs by a labelled graph
is similar to ours, the conditions on rewrite rules are more restrictive (the left-
hand side of a rule is limited to trees). For now, term-graph rewriting in Tom
is expressed by syntactic term rewriting. Contrary to [3], there is no garbage
collection phase and referenced subterms can disappear or change, leading to
invalid terms. One solution would be to integrate this garbage collection phase
in the ToM matching. An other attractive approach would be to implement
the formalism presented in [6] where the right-hand side of the rewriting rules
consists in a set of actions on the pointers.

4 Strategic programming with term-graphs

ToM provides a powerful strategy language inspired by ELAN and Stratego.
The purpose of strategies is to describe how transformation rules should be
applied. In case of terms with references, the strategy language must be
extended in such a way that we can traverse them as graphs.

10
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4.1 ToM strategy language

Elementary strategies are composed of the two basic strategies Identity()
and Fail() as well as type-preserving user-defined rewrite rules specializing
their behaviour:

Y%strategy Eval() extends Fail() {
visit A {
s(x,a()) > { return ‘f(x); }
s(x,y) -> { return ‘y; }
}
}

When applied to a node of sort A, a transformation is performed if one of the
patterns matches the node. Otherwise, the default Fail strategy is applied.

More complex strategies can be built on top of elementary ones, in-
volving basic combinators introduced in ELAN [8] and extended in [15]:
Sequence(sl,s2), Choice(sl,s2), A11(s), One(s), etc. We can therefore
build strategies such as ‘Choice(Eval(),Identity()) which tries to apply
Eval() to the current node and returns it unchanged if Eval() failed (i.e.
none of the patterns matched the current node).

Besides, the strategy language allows the declaration of recur-
sive parametrized strategies, enabling the definition of higher-level con-
structs. For example, the fix-point operator can be expressed by
Repeat (s) = ux.Choice(Sequence(s,x), Identity()), where i denotes a
recursion operator, x a variable, and s a parameter of the strategy. In ToM,
we raised the recursion operator to the object level, allowing the definition of
complex strategies in a truly algebraic manner:

Strategy Repeat(Strategy v) {
return ‘mu(MuVar("x"),
Choice(Sequence(v,MuVar("x")) ,Identity()));

Finally, GOM generates a congruence strategy _f for each constructor f
of an algebraic signature. Using the notation s[t] to express the application
of the strategy s to the term t, f(sy,...,s,)[f(cy,...,cy)] returns
f(sylcil,...,splcy]) and fails if the head symbol of the subject is not
f. This allows to perform pattern matching “on the fly” during term traversal.

One noticeable property of strategic programming with ToMm is that it is
possible to get the current absolute position inside the visited term during a
traversal. This allows for instance to collect in one pass the set of reduced
forms of a term for a given rewrite system. In our case, we will make use of
this feature in the next section to collect the positions of bounded variables
occurences under an abstraction.

11
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4.2 Extension of Tom strategy language

In order to traverse terms with references, we enrich the strategy language
of ToM with one new strategy combinator Ref whose semantics is defined as
follows:

s[t’] if t’ is the term referenced by t
Ref (s) [t] =

s[t] otherwise

This new basic combinator can be used everywhere in a composed strategy.
One important characteristic of the TOM strategy language is that every com-
posed strategy is itself a term and therefore can be traversed and rewritten.
Adapting a strategy term for graphs with references consists in weaving the
Ref combinator ahead every elementary strategy inside a strategy term. For
example, Sequence(s1,s2) where s1 and s2 are elementary strategies will be
rewritten into Sequence (Ref (s1) ,Ref(s2)).

5 Application to the lambda-calculus

Let us see now some application of our programming framework through the
implementation of a basic A-calculus interpreter. The graph with references
will encode variable bindings, acting as de Bruijn indices, while the strategy
language will translate the usual evaluation strategies of A-calculus.

We work with a minimalist GOM signature:

LT = App(LT, LT)
| Abs(LT)

The chosen representation of A-terms makes use of terms with references
by replacing variables with positions pointing to the corresponding binder.
For instance, the term AfAz.(fx) will be encoded by the GOM term
Abs (Abs (App (posLT(-3) ,posLT(-2)))). This encodes a kind of de Bruijn
indices counting not only abstractions but also every node in the syntactic
tree of the A-term.

Let us write a beta strategy wich performs one -reduction step on a redex.
As mentioned in the previous section, it is possible to get the current position
inside a visited term during its traversal by a strategy. Thereby, knowing the
position of A inside the visited redex (Az.f a) will allow us to find all the
occurences of x in f, 7.e. relative positions pointing to A. The beta strategy
then simply consists in four steps when applied to an application (Az.f a):

(i) collecting the position of A;
(i) collecting a;
(iii) replacing all the occurences of relative positions pointing to A by a in f;

12
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(iv) replacing the redex by the modified f.

Assuming we have a mutable structure info (a JAVA class here) which can
store both informations of the first and second steps, this is achieved by the
following strategy:

Strategy beta = ‘Sequence(
_App(Identity(),collectTerm(info)),
~App(
Sequence(
collectPosition(info),
_Abs(ux.Choice(substitute(info) ,A11(x)))),
Identity()),
clean());

We can notice the presence of four user defined strategies: collectTerm,
collectPosition, substitute and clean. They respectively perform the
four steps described above. Their code is obvious and one line long, except
for the substitute strategy which has to compute the absolute position
referenced by the current term to compare it with the position of A stored in
info. Then it performs the necessary shifts on bounded variables (relative
positions) inside a before returning it. The whole strategy itself is an overlap-
ping of congruence strategies. The ux.Choice(substitute(info),A11(x))
construct means that we do not go down further inside the term if the
substitution succeeded.

We shall now apply this beta strategy on a A-term with some evaluation
strategy until we reach a fixpoint. beta being a strategy, it can be combined
with other strategies to perform reductions. In particular, the TopDown and
Innermost strategies respectively encode call-by-name and call-by-value eval-
uation strategies modulo some fixpoint computation encoded by the provided
RepeatId strategy. They are themselve expressed using elementary strategies:

TopDown(s) = ux.Sequence(s,All(x));
Innermost(s) = ux.Sequence(Al1RL(MuVar(x)),Try(Sequence(s,x)))

Where A11RL applies s to all the childs of the current node from right to
left. Substituting s by beta inside one these enables the expected evaluation
behaviour.

Let us briefly see how a typical use of term-graphs, namely sub-
terms shared evaluation, can be implemented by a slight modification
of the previous example. We now assume that many bounded vari-
ables are represented by shared subterms where “shared” is meant in
the sense of term-graphs semantics. For example, the A-term Az.(x )
will be represented by Abs(App(posLT(-2),posLT(-1,1))) instead of
Abs (App (posLT(-2) ,posLT(-2))). The previous beta strategy is then

13
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still mainly valid since this modification only affect the situations where
the second child of an application is a variable, i.e. a relative position.
Hence, changing the line _App(Identity(),collectTerm(info)) by
_App(Identity() ,Ref(collectTerm(info))) suffices to adapt the strategy
to the new A-terms representation. This modification is of course relevant in
case of a call-by-name strategy.

Finally we shall notice that termgraphs are sometime used to represent
cyclic Ad-terms [1]. This raises the question of the representation of terms
cycling on an abstraction like (x | z = Ay.(x y)) with our de Bruijn encoding.
Indeed, both y and z variables are then references denoting the root of the
A-term. This is easily handled by the use of “colored” references, implemented
by two different posLT constructors: Abs (App(PosLT1(-2),PosLT2(-2))).

The discussed implementation is available in the Towm subversion
repository !, under the examples/termgraph path.

6 Conclusion

To the best of our knowledge, we have presented here a new way of representing
terms with references which presents strong similarities with the term-graph
formalism. Using the TOM language as a programming background, we have
discussed the various advantages and drawbacks of such an approach at differ-
ent levels: memory representation, pattern matching and strategic traversal.
We finally presented an application of this framework via the writing of a
simple A-calculus interpreter making an heavy use of strategies.

A major part of the presented propositions has been implemented. We
are now working on the definition of a rewriting step similar to the one of [2].
Another field of investigation would be the writing of Ref strategies aborting
infinite loops appearing during the traversal of a graph with cycles. This could
be achieved by some map associating counters to visited nodes.

As shown by the last section, this model has interesting applications and
opens promising perspectives in terms of program transformation and code
analysis. Besides, the normal form described in section 2.2 makes it a solid
basis for experimenting transformations on term-graphs in a concise and ex-
pressive manner.
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Abstract

We present a simple system of four symbols and seven rules that can be used to translate a subclass of
graph relabeling systems called hard interaction nets.
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1 Introduction

Interaction nets introduced by Yves Lafont [3] can be considered as a generalization
of linear logic multiplicative proof nets. Syntactically they are presented as graph
rewriting systems where rules are applied on pairs of nodes (called cells) connected
by an “active edge” called cut by logicians. Lafont presented in [4] a system of three
symbols and six rules called interaction combinators that is universal: any interac-
tion system can be translated (in a sense that we shall detail below) into the system
of the combinators. Interaction nets have been successfully used to implement var-
ious reduction strategies for the A-calculus ([7] and [5]) and several interpreters (in
particular a parallel one by [8] and a graphical one by [6]) for interaction nets have
been proposed. More recently, non-deterministic extensions have been studied.

In this paper, we shall focus on a restriction called hard interaction nets where
the geometry of the net is invariant during reduction and propose a universal sys-
tem (called hard combinators) for such systems. The translation of an arbitrary
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hard interaction system into hard combinators has a quite different character from
the corresponding translation for interaction nets where the key technical point is
implementing the duplication of some nets.? Here we shall represent nodes as bi-
nary words and calculate the transformations with boolean functions. The name
hard interaction nets is well-chosen, since they are a form of abstract hardware. In
this perspective, it is interesting to sum up the important rules and give the basic
components that can be used to construct asynchronous circuits. For example, it
should be possible to build an asynchronous computer simply by following classical
Von Neumann computer architecture and using hard combinators [1].

Notation. The domain of some variables is implicitly given by their names with
the following conventions: x,vy, z, zg, 1, T2, ... are binary digits, p, ¢, r, s,t are binary
words and o, p and 7 are signatures (4 or —). Concatenation of p and ¢ is noted pq
so zy is a word with two digits and the scalar product of z and y is explicitly noted
xz X y. z" denotes the word z...x with n letters. |p| is the length of p. The set of
boolean values {0, 1} is noted B and the set of natural numbers N.

2 Hard interaction nets

We present hard interaction nets informally from scratch without any reference to
linear logic or even to interaction nets. A hard interaction system (or hard system
for short) is composed with a set of symbols and their corresponding arity and with
a set of interaction rules.

2.1 Cells, Ports, Nets and Cuts

Occurrence of symbols are called cells and have n + 1 ports where n is the corre-
sponding arity. Each cell has exactly one principal port (pictured with a blob) and
n auxiliary ones:

1 n

0

Nets are build with a set of cells and free ports where ports (principal, auxiliary
and free ones) are connected pairwise. Cuts are particular nets composed of two
cells connected by their principal ports.

2.2 Interaction rules

The difference between the principal port and the auxiliary ones is essential since
rewriting (or interaction) can be applied only on cuts. In other words, the left
member of an interaction rule is composed of two cells connected by their principal
ports. Interaction consists in relabeling cells and changing the orientation of the

4 more precisely principal nets for the connoisseur.
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principal ports; we shall say that the cell is turning. To sum up, an interaction rule
is pictured as follows,

and we say that if an a-cell interacts with a B-cell it becomes o/ and turns k times
counter clockwise. Similarly, S-cell becomes ' and turns / times. Note we are
interested only in deterministic hard interaction systems so there is at most one
interaction rule for each pair of symbols.

2.8 Reduction

Starting from an initial net containing cuts, we can apply an interaction rule ob-
taining another net and so on until an irreducible net if the reduction finishes. Hard
interaction systems are very simple since the computation is local (only two cells are
involved in a reduction) and the geometry of the net is invariant. However one can
show [4] that it is complete from a computational point of view i.e one can define
a hard interaction system that simulate a Turing Machine. Let us finish with an
essential property due to the local synchronization.

Proposition 2.1 (strong confluence) If a net pu reduces in one step to v and V',
with v # V', then v and V' reduce in one step to a common net &.

1
y/ \V,
NS
3

Proof The left member of an interaction rule is a cut and v # v'. Consequently
the above reductions are applied on two different instances of cuts. Two instances
of cuts are necessarily disjoint (a cell is in one cut at most) so the corresponding
interaction rules can be applied independently. O

Consequently reduction is deterministic in a strong way: any reduction strategy
gives the same result with the same number of steps.

Corollary 2.2 (reduction) If a net u reduces to an irreducible net v in n steps,
then any reduction starting from u eventually reaches v in n steps.

18
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3 A universal system: hard combinators

We present a particular hard system called hard combinators with four symbols and
seven rules that is sufficient to simulate all other hard systems. More precisely, we
can translate each cell @ by a net [a] built with hard combinators such that,

3.1 Cells

Our system is composed of four different symbols: two binary ones, 0 and 1, and

two unary ones, + and —.

3.2 Rules

There are seven rules that can be split into two groups: three rules between binary
cells and four rules between unary and binary cells. There is no rules between unary
cells. Binary rules are also called uniform rules because the principal port “turns
in the same direction” (counter clockwise) for each interaction. The three uniform
rules can be summed up by the following schema where 4+ denotes sum modulo 2.

Consequently, the four other rules are called non-uniform rules because the ori-
entation of a binary cell depends on the unary cell interacting with it. Intuitively,
(4)-cells let binary cells turn counter clockwise and (—)-cells force them to turn
clockwise.
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Definition 3.1 [clocks] for any bit z, =

l

Q) of

Clocks are introduced for graphical convenience to avoid complicated crossing of
wires. They are noted T because they interact as binary cells except their principal
port turns clockwise. For example, we have the following reductions.

i G

4 Uniform components

DA

In this section, we consider the subsystem composed only with the two binary cells
and the corresponding three uniform rules. Surprisingly, non trivial functions can
be built in this restriction and, indeed it is a decisive step in the construction of a
universal translation.

Definition 4.1 [binary pipes| for any bit z, —| 7 ¢ = @

*
Lemma 4.2 for any bits x andy, — T ¢y — ——> —2Y — T ¢—

Proof We apply uniform rules and the equality x +x +y =y mod 2

— S e =
Il
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O

Definition 4.3 [pipes| for any wordp = zy...2,, | P ¢ = (Tt | T1%

n

~
Notation. We also picture an unknown pipe D for pipes corresponding to any
word of size n or simply ‘D if there is no ambiguity. Those blank representations

come from the idea that if one does not know what is stored in a pipe then, the
place is free !

*
Lemma 4.4 for any wordsp andq, — P ¢ ¢ — ——> —% ¢ — D ¢
Proof by induction on p and gq. O
Definition 4.5 [zero] —10 | = o"o o 0

N

*

Lemma 4.6 for any bit z, | 0 > 0 1
Proof The above reduction can be easily checked with the binary rules. O

Definition 4.7 [seesaws| for any bit x, @ = @*" 0

As clocks, seesaws are introduced to simplify the definitions of the other nets and
do not have any functional property. Seesaws interact as binary cells: they change
their principal port and their symbol is summed with the interacting cell.

Remark 4.8 Do not confuse between pipes (binary words in a square box), seesaws
(bits in a round box) and unary cells (signatures in a round box).

Definition 4.9 [diodes] # =

Remark 4.10 Unlike pipes or zero, diodes correspond to a set of nets not to a
unique one. Indeed, bits x and y in the above definition can have any binary values so
there are four different representation of a diode. We shall use this kind of definition
for other components.
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Lemma 4.11 For any bits © and vy, —

*

Proof The above reduction can be easily checked with the uniform rules. O

Remark 4.12 According to remark 4.10, the above lemma should be read “starting
from any representation of the diode in the left member, we obtain another (possibly
different) representation of the diode in the right member.

5 Invariant nets

Definition 5.1 [Invariant nets| Let us consider a net v where free ports are par-
titioned into three sets: inputs, pictured with an in-going arrow, outputs, pictured
with an out-going arrow, and unused, pictured with no arrow. We say that v is in-
variant on inputs p1, ..., pr and produces outputs qi, ..., g when we have the following

reduction,
s
et . it
. v E— .
¢ ¢ * ¢
where the length of the “input” pipes are respectively [p1|, ..., [px| and the length
of the “output” ones |qi], ..., |g¢|]. We shall use the following notation for invariant
nets,
P1 Dk
Yoo ¥
7
Yooy
a G

Remark 5.2 We do not mention where are the principal ports of v. Indeed, the
important point is to identify the inputs and the outputs and to know how they
interact with pipes.

As explained in remark 4.10, the net v corresponds to a class of nets and the
reduction above means that the right member is in the same class of nets as the left
member. For example, in definition 5.6 , 2y and yo range over {0,1} and o ranges
over {4+, —} so there are eight different representations.

Remark 5.3 According to the previous definition, an tnvariant net is a pair com-
posed of a met and a partition of its free ports and there may be several invariant
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nets corresponding to a unique net. However, we also say that a net is invariant
when such a partition exists.

Remark 5.4 In the previous section we introduced unknown pipes and zero which

are invariant. More precisely, p++:|+p and @0.

5.1 Duplicator and arithmetic operations

To avoid cumbersome repetitions, we give the definition and the corresponding in-
variance property of the following nets in one shot. For example, the net § is defined
by the right member of the equality and we show that it is invariant on input p and
produces output p twice.

p
L
Definition-Lemma 5.1 (duplicator) ; 6+ -
pp
Proof We apply lemma 4.11 for the diode and the uniform rules. O

x
1

[ Ny

Definition-Lemma 5.2 (plus) 1_
_|_

rTy

Remark 5.5 + denotes the sum modulo 2.
Proof We apply lemma 4.11 for the diode and the uniform rules. O

In the uniform subsystem, we have defined constants, pipes, duplication and
plus. So one may wonder if it is possible to define product as well in this subsystem.
The answer is probably negative. Indeed, the plus operation (binary xor) is weaker
than binary addition that is computing the sum and but also the carry. Moreover,
one can prove that is impossible to build a uniform system that is universal.

8
<

Definition 5.6 [sequential product] i

The sequential product use input y first. If y is zero the result is directly returned
and input x is not used.
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*—

Definition 5.7 [partial quotient]

W
z/y

8
—

The partial quotient can be considered as the dual of the sequential product.
Both inputs are used but it returns no result when input y is zero.

Lemma 5.8 We have the following invariants for sequential product and partial
quotient,

0 T 1 T 0 T 1
D D ¢ D ) S
X , X , - and -
Y Y { Y
0 x x
Proof Trivial with uniform but also non-uniform rules. O

5.2 Composition

The first steps, building invariant nets from scratch can be compared to bootstrap in
the sense that the difficult part is only to build the very first components (constant
zero, duplicator, product). It is now easy to compose invariant nets with pipes and
build other more complicated nets.

However, for synchronizations reasons, it is not always possible to compose two
invariant nets by plugging directly outputs of the first one with inputs of the second
one. To avoid this problem, outputs of invariant nets are connected to unknown
pipes. It is not difficult to verify that such “buffered” invariant nets can be freely
composed. In some cases, we can suppress those “output pipes” but the proof of the
invariance property is tedious. Consequently, from now on, all outputs of invariant
nets are connected to pipes when they are composed with other invariant nets.

A first application is to implement binary word constants.

Definition-Lemma 5.3 (constant)

PN = T wi

hslES R

Remark 5.9 For clarity, constants are defined with non-reduced nets. We can verify
that we can reduce them and by the confluence property, we can use the reduced form.

Let us give an invariant net for boolean and.
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Definition-Lemma 5.4 (boolean and)

l
r Yy )
D ¢ | T
A = - - -
f |
TNy
X
\
Proof We consider two cases: y = 0 and y = 1 and apply composition. O

Remark 5.10 x Ay = x Xy so the difference between sequential product and boolean
and is that boolean and always uses its two inputs.

In the same way, we can define invariant nets with several inputs and outputs for
vectorial boolean functions on several inputs. Eventually, those invariant nets can be
used to build the corresponding functions on binary words. To that purpose, the nets
spit and merge can be composed to build some kind of parallel/serial adaptators.

Definition-Lemma 5.5 (split and merge)

l
Ty 0
b
split _ 10 01
T : .
T vy - -
\ \
vy 10 01
L i el
merge = % %
+
Ty | N :
{
Proof By composition. O

6 The Translation

Now we are ready to translate a given hard interaction system into the system of
hard combinators presented in section 3. Symbols are numbered and represented by
binary words of a fixed length N. A first idea is to represent the set of rules that we
want to encode by a partial function ¢ : BY x BV — BY x N where ¢(p,q) = (¢, k)
if p interacts with ¢, becomes p’ and turns & times. Let us remark that we need the
values of ¢(p,q) and (g, p) to compute the reduction between p and q.

In fact, we choose a slightly different representation and introduce stable cells
that interact with another (stable) cell and unstable cells that interact internally
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reaching eventually a stable state. Each interaction is decomposed into one ezter-
nal interaction between two stable cells followed by several (possibly zero) internal
interactions inside each unstable cell. This way we can impose that a cell turns (uni-
formly !) exactly once at each (external or internal) interaction. Consequently, the
set of rules is represented by a partial function ¢ : BY xBY — BN where 1(p,q) = p’
if p interacts with ¢, becomes p’ and turns exactly once.

Let us define 4 from . For each couple of (stable) symbols p and ¢ such that
o(p,q) = (p',k +1)° we introduce k new (unstable) symbols p1, ..., p, and set,

(

w(pa Q) =D
P(p1,0N) = po

P(pr—1,0") = pi
| Yo, 0Y) =

Since unstable cells do not interact with another one, we arbitrarily fix the value
of the second argument of ¢ to 0V. Here is the graphical representation of an
interaction between p and q where ¢(p,q) = (p’.k + 1) and ¢(q,p) = (¢, £ + 1),

k+1
1 external k internal £ internal
_ _ _
interaction interactions interactions

Let us introduce two invariant nets. The first one corresponds to the function
1 that computes the new symbol after an (internal or external) interaction. The
second one called discriminant &, says if a cell is stable or not.

Definition 6.1 [transition and discriminant]

D q p
D :
(2 £
¥ R
U(p,q) p 1N if p is stable

0N otherwise

Now we can give the translation of the port of a cell into two parts: 7, and moyt.
The important idea is that 7, computes the next symbol p’ without any interaction
with ¢ in the case p is not stable. In the same way 7oy gives the current symbol p
only if p is stable.

5 If the principal port remains unchanged after reduction, we say that it turns a + 1 times where a is the
arity of the cell.
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Definition 6.2

l
p . P q 3
l 3 l .
Tout = i. i Tin = X
| + B — I
p | p 0
X X
Lemma 6.3
p p
b |
Tout | and Tin if p is unstable
\ ¥
¥(p,0N)

p p q
and if p is stable
p b(p.q)

Invariant nets are easy to use and compose because we feel “at home” with
inputs/outputs. However this notion is not mandatory for general interaction nets.
Indeed, in the translation of a port, we need some kind of “full/duplex” connection
since a cell outputs its current symbol to another cell but also inputs the symbol of
the cell with whom it is interacting ! This is exactly what is done by the net .

Definition 6.4 [gamma]

M

-~
l
D 22—
Il
e e 3 3 T

Port p corresponds to an input, port ¢ to an output and ¢ to the “full/duplex”
interface. Each port of a cell corresponds to a -cell; when two cells interact, the
input of a «y-cell is reproduced on the output of the other ~-cell. This property is
summed up in the following lemma.
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Lemma 6.5

Q{Q«H—“@
N 2 e

Remark 6.6 Let us remark that surprisingly v ts built only with uniform cells.

Now we can compose, Tin, Tout and -y and give the translation of a port .
According to the previous paragraph, port 4 (interface) is both an input and an
output.

Definition 6.7

|

4]
p l

L Tout
1 — T = L
‘ My
4 |
Tin

vFﬁ * <3
N <

if p is stable

vpg) Y
(g, p)
p
3
™ if p 1s unstable
¥
»(p,0V)
Proof By composition. O

The above lemma details two cases: two stable cells interact with one another
or an unstable cell interact internally. Consequently, port 4 is unused or plugged to
the interface of another 7 net.
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Definition 6.9 [translation of a cell]

l l
T e o— ' — T e L
;pa—a T

where the length of the pipes is [p| = N

By analogy with computer architectures, « corresponds to a form of Arithmetic
and Logical Unit (ALU) and pipe to a register. Then this basic architecture (a net
7w composed with a pipe) is repeated for the translation of each port of the cell.
Another possibility is to “centralize” the transition function for the whole cell. The
advantage is we do not have to introduce unstable cells but on the other side we
have to implement a more complicated component for the interface part.

Finally, it is now easy to verify that our translation simulates the rules of a given
hard system.

Theorem 6.10

Proof Apply lemma 6.8 and definition 6.9. See appendix A for the detailed reduc-
tion. O

7 Conclusion

The system we propose seems to be a good candidate for a universal hard system.
However this work is a first step in the domain of hard interaction nets. Indeed
many questions related to fundaments as well as applications remain still open.

e The first one concerns the minimality of such a system; is it possible to give a
simpler universal system with fewer symbols or rules? For instance, it is not easy
to know whether three symbols would be sufficient. We only know that a system
composed only of uniform rules cannot be universal.

e There is a correctness criterion for interaction nets imported from linear logic to
prevent deadlocks. It is important to reformulate this criterion for the particular
case of hard interaction nets since it is an opportunity to simplify and perhaps to
refine it.

* Although (general) interaction nets cannot be translated into hard interaction
nets, it is interesting to see if there could be a compilation process for some
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subclass of interaction nets. Interaction nets would be the high level program-
ming language whereas hard interaction nets would be the target (low level) lan-
guage. In the same spirit, interpreters have been developed for interaction nets.
Would it be possible to physically implement components for hard combinators?
In other words, we can consider hard combinators as components for electronic
asynchronous circuits?

As interaction nets can be compared to graph rewriting systems, hard interaction
nets can be compared to graph relabeling. These techniques have been particularly
successful in the study of graph election algorithms [2]. It would be interesting to
implement such algorithms with hard interaction nets and this way take benefit
from the confluence property! More generally, it would be interesting to compare
hard interaction nets with other existing rewriting techniques.

The fixed geometry of hard interaction nets gives them a very similar flavour to
cellular automata, or a generalization of cellular automata to non-rectangular grids
and there are universality results for cellular automata so it should be interesting
to compare those rewriting systems.
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A Simulation of hard interaction rules

We detail the proof of theorem 6.10. We consider the interaction between a cell p
and g where p becomes p’ and turns k£ + 1 times and ¢ becomes ¢’ and turns £ + 1
times. | \

m o T e
G )

F— - —e e T

*
\ \ \
T e o - — T e o T e— 1>
<<D e TT —plip_q; T = —e | o T
\
\ \
~— — T e o T e 1>
H 1 e T |— —e e 7T
\ \
*
\
*— o T e— 1>
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Abstract

Boolean interaction systems and hard interaction systems define nets of interacting cells. They are based on
the same local interaction principle between two cells as interaction nets but do not allow that the structure
of nets may evolve. With boolean nets, it is not possible to create or destroy cells or links between existing
cells. They are very similar to hardware circuits but based on an implicit rendez-vous information exchange
mechanism.

If we want to implement such systems using hardware circuits, it is important to define a set of universal
combinators that reduces this task to the implementation of a fixed number of known agents. Here, we show
how we can simulate every hard interaction system by a universal boolean interaction system composed of
three combinators: a duplicator, a NAND gate and a three-state input/output channel.

Keywords: interaction net, hard interaction system, boolean interaction system, combinator, universal
system.

1 Introduction

Interaction nets [6] are a programming paradigm inspired by Girard’s proof nets for
linear logic [3]. Some translations from A-calculus into interaction nets [9,5,10] or
from proof nets [7,12,2,13] show that interaction systems are interesting for com-
putation. They are a special case of a hypergraph replacement systems [14] or of
graph relabelling systems [11] but are strongly confluent. In fact, interaction net
reductions are purely local and confluent. Moreover, the number of steps that are
necessary to reduce completely a net is independent of the way one may choose.
From the point of view of A-calculus, translations used in [4,5] captures optimal
reduction.
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Hard interaction systems are, in fact, a variant of interaction systems where rules
are constrained in such a way that the structure of nets can not change. Rules do
not create or destroy cells or links between cells. They can only change the symbol
of agents and the port that is principal.

In [8], Lafont introduces a universal interaction system with only three different
symbols 7y, § and €. d and e are respectively a duplicator and an eraser and + is a
constructor. This system preserves the complexity of computation for a particular
system. The number of steps that are necessary to reduce a simulated interaction
net is just (at most) the number of steps of the original interaction net multiplied
by a constant (which depends only on the simulated system and not on the size of
the original interaction net). [1] shows that there exists a universal system with
only two symbols.

However, both systems can not be considered as universal hard interaction sys-
tems because the rules that define the systems do not preserve the structure of
nets. The paper investigates this problem and shows how we can simulate every
hard interaction system by a universal boolean interaction system. In fact, boolean
interaction systems are hard interaction systems where information that are ex-
change between agents are binary like hardware circuits connected by a wire can
only communicate binary information.

We thing that this result is interesting if we want to implement (eventually with
hardware circuits) such system using a finite set of combinators. This result also
shows the main principles behind hard interaction system: duplication (the system
is linear), computing (something must be done) and conditionnal input/output
interaction (the cells must choose to whom they want to interact to).

This paper is organized as follows: after an introduction to interaction nets and
hard and boolean interaction systems, the notions of interaction net homomorphism,
simulations and universal hard interaction systems are presented. Section 4 shows
how to translate a system to a universal system.

2 Hard interaction system

Interaction nets are a model of computing introduced by Yves Lafont in [6]. We
briefly presents interaction nets and hard interaction systems are. Boolean interac-
tion systems are presented in the Section 4.

2.1 Agents and nets

An interaction net is a set of agents linked together through their ports. An in-
dividual agent is an instance of a particular symbol which is characterized by its
name « and its arity n > 0. The arity defines the number of auxiliary ports associ-
ated to each agent. In addition to auxiliary ports, an agent owns a principal port.
Graphically, an agent is represented by a circle :
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0

In fact, the ports form a circular list that are represented on the circle. The
principal port is marked by a triangle and the name is put inside the circle. The
(dynamic) state of an agent is only determined by its name and the position of the
port that is principal.

An interaction net is a set of agents where the ports are connected two by two.
The ports that are not connected to another one are the free ports of the net and
are distinguished by a name. The set of names of the free ports of a net is the
interface of this net. Below, the interface is {y,z}. « has one auxiliary port, 8 has
two and € has none.

Y
x

2.2  Hard interaction rule and hard interaction system

An interaction net can evolve when two agents are connected through their principal
ports. An interaction rule is a rewriting rule where the left member is constituted
of only two agents connected through their principal ports and the right member is
any interaction net with the same interface. For hard interaction system, the rule
must preserve the structure of nets. Thus the right member of a hard interation
rule is also constituted of two agents with the same arities as the agents of the left
member of the rule and they must be connected by a link that corresponds to the
same ports as for the left member. In fact, the right member of a rule is the same as
its left member except that names may be different and the ports that are principal
may be different (at least one principal port must be different).

The right member of a hard interaction rule can be characterized for each inter-
acting agent by the new name of the agent and by a rotational number from 0 to n
(n is the arity of the agent) that indicates which port, counted clockwise from the
current principal port, becomes principal (0 means that the principal port does not
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move).

We write this rule [o, 8] — [y, +i, 0, +7] which means that « replaces a, d replaces
B, the principal port of 7 is the j-th clockwise port from the principal port of o and
the principal port of § is the i-th clockwise port from the principal port of 3.

An interaction net that does not contain two agents connected by their principal
port is irreducible. A net reduces to another net by applying successively zero, one
or several times hard interaction rules to couples of agents connected through their
principal ports. Each step substitutes the couple by the right member of the rule.

A hard interaction system T = (3, R) is a set of symbols ¥ and a set of hard
interaction rules R where agents in the left and right members are instances of the
symbols of X.

A hard interaction system Z is deterministic when (1) there exists at most one
hard interaction rule for each couple of different agent and (2) there exists at most
one hard interaction rule for the interaction of an agent with itself. In this case, the
right member of this rule must be symmetric from the central point (this is necessary
for a deterministic system). A hard interaction system Z is complete when there is
at least one rule for each couple of agent. In this paper we consider deterministic
and complete systems. With these systems, we can prove that reduction is strongly
confluent 3. In fact, this property is true whenever the system is deterministic.

3 Universal hard interaction systems

Universality means that every interaction system can be simulated by a universal
interaction system. Here, we use a very simple notion of simulation that is based
on interaction net homomorphism.

3.1 Interaction net homomorphism

Let X and X/ be two sets of symbols. An homomorphism ® from ¥ to X' is a map
that associates to each symbol in ¥ an interaction net of agents of ¥/ with the same

interface. This homomorphism is naturally extended to interaction nets of agents
of 3.

3 A system is strongly confluent if and only if when a net reduces in one step to A" and A/, then A and
N’ reduce in on step to a common net.
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3.2  Simulation

We say that an homomorphism @ from ¥ to ¥’ defines a simulation of an interaction
system Z = (3,R) by another interaction system Z' = (X', R’') if the reduction
mechanism on interaction nets of Z and Z' are compatible by ® [8,1]: for every
interaction net N of X:

(i) NV is irreducible if and only if ®(N) is irreducible;

(i) if N reduces to M then ®(N') can reduce to ®(M).

This definition brings some properties with complete and deterministic interaction
systems:

(i) the translation of an interaction net composed of a unique agent must be
irreducible;

(ii) this translation has at most one agent whose principal port belongs to the
interface and the symbol of this interface that is connected to this agent is the
same as the symbol that is connected of the principal port of the original agent;

(iii) this translation must be connexe;

(iv) an homomorphism is a simulation if (i), (ii) and (iii) are verified and if the left
member N (composed of two agents) and the right member M of every rule
in R verify ®(N) reduces to ®(M);

(v) the simulation relation is transitive and symmetric.

3.8 Universal hard interaction system

A hard interaction system U is said to be universal if for any hard interaction system
T, there exists a simulation ®7 of Z by U.

4 A universal boolean interaction system

In this section, we show how to simulate a particular hard interaction system Z with
a fixed hard interaction system.

4.1 Simulation with agents of arity 2

We can normalize the arity of agents to always be 2. In fact, we have seen that a rule
may be characterized by two informations for each agent of the right member: the
new name and the number of clockwise shifts, from 0 to n, where the new principal
port must be set.

For T = (%,R), let N > 0 be the maximum arity of . We define ¥/ =
{(,2)} U{(,2) | (i) € ¥, j €{0,...,N}}. Let ®x; the homomorphism where
an agent « of arity ¢ is transformed into an agent ag and 7 agents 2 each of arity 2:
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We define Z' = (X', R'), where R’ is defined as follows. For Z, the rule between
a and § results in v in place of « with a clockwise shift of 7 for the principal port
and 0 in place of 8 with a clockwise shift of j for the principal port. This rule is
replaced by a rule between ag and fy. The right member of the rule becomes +;
and d;. If i = 0 (resp. j = 0) the principal port of ; (resp. §;) is the same as the
principal port of ag (resp. (o). Otherwise, the principal port is the next clockwise
port. For 1 <4 < N, the rule between Q and ~; (resp. ;) replaces Q by 7;_1 (resp.
di—1) and ; (resp. 0;) by Q. If 4 = 1, the principal port of v;,_1 (resp. d;—1) is the
next clockwise port. Otherwise, it is the next counter-clockwise port. For €, it is
the next clockwise port.
[, B] = [,1,0, 7] is replaced by one of the following rules:

* [0, Bo] = [7i,0,8,0] if i = 0 and j = 0.

* (a0, Bo] = [7i, 0,85, +1] if i = 0 and j # 0.

* [, Bo] = [vi, +1,65,0] if i # 0 and j = 0.

e [ag, Bo] = [vi, +1,0;,+1] if i #£ 0 and j # 0.

The rules for € are:
© Q7] = [Yie1, +1,Q,+1] if i = 1.
o [Qvi] = [vie1, +2,Q, +1] otherwise.

Theorem 4.1 ®x defines a simulation of T by T’

The proof is straightforward: the translation of an agent is a loop of agents which
is connexe and irreducible and has only one principal port that is connected in the
interface to the same symbol as the original agent. Secondly, if A is the left member
and M the right member of a rule of Z, ®x(N) reduces to 5 (M) (usually in more
than one step depending on the clockwise number of shifts of the principal ports of
the agents between A and M).

4.2 Boolean interaction system

The second step in our construction consists in the simulation of the boolean func-
tions. For that, we use boolean agents. This kind of agents has a name that is
composed of two informations: a boolean output state that can be either 0 or 1 and
an internal state p. We note 0, and 1, these names. A boolean interaction rule
concerning two boolean agents is a hard interaction rule [ay, B,] — [Vr, +1i, ds, +7]
(e, B,7,6 € {0,1}) that defines y, r and i as functions of a;,, and § (they do not
dependent of ¢ which is the internal state of 8,) and 4, s and j as functions of
and « (they do not dependent of p which is the internal state of «,).
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Yj+1

Ti+1 Tit+1

This kind of hard interaction system can be defined by a boolean function for
each symbol (and not for a couple of agents as with a hard interaction rule) that we
call boolean interaction rule: a,[B] — [y, +i]. This boolean rule describes a half of
an interaction rule. It says that an agent o, is transformed into an agent v, when
it interacts with an agent with a boolean output state 5. The new principal port is
the i-th clockwise port from the current principal port. We call boolean interaction
systems such hard interaction systems.

4.8 Simulation of boolean circuits

Every boolean function can be simulated by a particular boolean agent. For in-
stance, a logical binary NAND (not and) gate is simulating by an agent with 3
ports (the arity of the symbols is 2). This gate reads the two inputs then gives
the result on its output. After this cycle, the gate starts again to read the inputs
and write the output in an endless loop. Starting with 0, on the first input port,
the agent continues with the second input port using one of the two boolean inte-
action rules: 04[0] — [0p, +1] or 04[1] — [0¢, +1]. Then, after the interaction with
the second input, the gate delivers the result on the output port using one of the
four boolean inteaction rules: 0,[0] — [14,+1], 05[1] — [14,+1], 0.[0] = [14,+1]
or 0.[1] — [04,+1]. Finally, the gate returns to the first input port, ready for
the next cycle, using one of the four boolean inteaction rules: 04[0] — [04, +1],
04[1] = [0q, +1], 14[0] — [0g, +1] or 14[1] — [04, +1].

A boolean duplicator is also helpful. This agent has one input and two outputs.
It reads the input, puts it on the first output then on the second output and starts
again a new cycle. The operation are sequential like the NAND gate. Starting
with 0. on the input port, the agent goes to the first output using one of the two
boolean inteaction rules: 0,[0] — [0f,+1] or 0.[1] — [1f,41]. Then, it switches to
the second output using one of the four boolean inteaction rules: 07[0] — [0y, +1],
0f[1] = [0g,+1], 14[0] — [14,+1] or 1¢[1] — [14, +1]. Finally the agent returns to
the input port, ready for the next cycle, using one of the four boolean inteaction
rules: 04[0] — [0, +1], 04[1] = [0c, +1], 14[0] = [O¢, +1] or 14[1] — [Oc, +1].

The other kinds of logical operators like OR, NOT or AND are also easy to
simulate. In fact, every vector of boolean function with several inputs and several
outputs may be simulated by a boolean agent and its boolean inteaction rules.
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But, the NAND and the boolean duplicator are enough to simulate every vector of
boolean functions.

Theorem 4.2 Every (vector of) boolean function can be simulated by a boolean
interaction system using the previous symbols and their rules (this system has 5+5 =
10 symbols).

Proof. In fact, every boolean function of several variables can be computed us-
ing binary NAND gates. Because each variable can be used more than once, we
need a duplicator (the connections between duplicators and NAND gates must be
done carefully to avoid deadlock because the inputs of NAND gates are tested in
a certain order and the outputs of duplicators are activated in a certain order).
When a variable does not appear in the boolean function, we have to “forget” its
value. A very simple solution consists in the introduction of this variable z into the
boolean function f using the following formula: f is replaced by f or (z and not z).
Thus every variable appears at least once in f and it is not necessary to forget an
outpout. O

4.4 Simulation of boolean I/O channels

To finish with the different bricks of our universal boolean interaction system, we
need a boolean device that receives a validation that enables or not an I/O interac-
tion. If the communication is enabled the channel writes the input bit to the I/O
port, waits for a boolean interaction, reads the bit and copies it to the ouptut. If
the communication is not enabled, the channel copies the input bit to the ouput
without interacting through its I/O port.

Output

Input

Enable

This device is simulated by a boolean agent. Starting with the state 0y, this
agent looks at the enable port. It switches to the input port using one of the two
boolean interaction rules: 05[0] — [0;,+1] or 04[1] — [0;,4+1]. Then, it gets the
input bit and following the state, puts the principal port on the I/O port (state 0;)
or on the output port (state 0;): 0;{0] = [0k, +1], 0;{1] = [11, +1], 0;{0] — [0;, +2] or
0;[1] = [1;,+2]. If the communication is enabled (states Oy or 1;), the channel gives
its boolean state through the I/O port and reads the boolean state of the boolean
agent that is connected to this port. The channel then switches to the output port
using one of the four boolean interaction rules: 0x[0] — [0, +1], 0x[1] — [1;, +1],
1£[0] — [07, +1] or 1x[1] — [1;, +1]. Now, even if the communication is not enabled,
the agent returns to the ouput port its boolean state which is either the read bit or
a copy of the input bit. After that, it goes back to the enable port using one of the
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rules: 0[[0] — [Oh,-l-l], Ol[l] — [Oh,-l-l], 1l[0] — [Oh,-l-l] or 1l[1] — [Oh,-l-l].

4.5 Simulation of a boolean interaction controller

A boolean interaction controller is a device that has a state, input/output boolean
channels and a transitional function. The controller chooses one of its input/output
channel, puts a boolean information on it, waits until it receives a boolean informa-
tion from the input/output channel and, following its transitional function, changes
the state. The controller repeats indefinitely these same steps.

| l

Input
1/0y Channel k \ New state
Enable 1/0O k
Controller Transition
function
Enable 1/0 1 I
/04 Channel 1 / Current state&Input
Output

T |

The controller and the transition function can be simulated by a boolean inter-

action system using NAND and duplicators agents. Channels are simulated by the
special boolean agent presented before. Thus, every boolean interaction controller
can be simulated by a boolean interaction system that has three kind of circuits:
NAND, duplicators and channels.

4.6 Simulation of a hard interaction system

It is relatively easy to see that every hard interaction system where the symbols are
specific to a port (the principal port of an agent must be the same each time the same
symbol appears on the agent) like the system that we have after the simulation by a
system with agents or arity 2 can be simulated by a particular boolean interaction
controller.

Theorem 4.3 The hard interaction systems I' obtained by Theorem 4.1 can be
simulated by a boolean interaction controller (that depends of I').

Proof. We need to code the symbols of Z' by binary numbers in a finite space. If
the system has N symbols, we need K > log,(NN) bits. The controller can be build
in such a way to operate with K bits rather than 1 (in the same spirit as we have
32-bit processors rather than 1-bit processors). The channels must exchange K bits
serially (like a serial communication channel controlled by microcode). O

Corollary 4.4 The system with NAND gates, duplicators and I/0 channels is uni-
versal (the system has 5+5+7=17 symbols).

5 Conclusion

We have shown that there exist universal boolean interaction systems. Our universal
system has 17 symbols and is very different of Lafont’s universal system. This
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system is certainly not optimal in the sense that it is surely possible to find a
universal boolean interaction system with less symbols (and less rules) but boolean
interaction systems are a special case of hard interaction systems and a solution for
universal hard interaction systems does not necessary give a solution for boolean
interaction systems.
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Abstract

We present polygraphic programs, a subclass of Albert Bilsrpolygraphs, as a computational model, showing howehes
objects can be seen as first-order functional programs. Weeghat the model is Turing complete. We use polygraphic
interpretations, a termination proof method introducedth® second author, to characterize polygraphic program@s th
compute in polynomial time. We conclude with a charactéioraof polynomial time functions.

Keywords: Polygraphs, termination proof, complexity characterirat

1 Introduction

Polygraphs are special higher-dimensional categorigsduaced by Albert Burroni to pro-
vide a unified algebraic setting for rewriting][ For example, any term rewriting system
can be translated into a polygraph which has, in case ofiteféarity, exactly the same
properties of termination and confluen&5].

Here, we study how these mathematical objects can be usecbaspautational model.
Informally, computations generated by a polygraph are dyna net of cells which indi-
vidually behave according to some local transition ruleBisTnodel is close to John von
Neumann’s cellular automata§] and Yves Lafont’s interaction net8][with notable dif-
ferences: while von Neumann’s automata are essentiallghsgnous, interaction nets and
polygraphs are asynchronous; polygraphs have a much ngidegeometry than interac-
tion nets: the underlying graphs of the formers are direa®gatlic graphs, preventing the
"vicious circles” of the latters.

Termgraph rewriting systems provide another model of gcgbtcomputation 14]:
it is an extension of term rewriting with an additional og@na, sharing, that allows for
a more correct representation of actual computation. Tdreskation of terms into poly-
graphs is close to the one into termgraphs and they seem &thawsame properties, as
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

suggested by the first results if{] For example, let us consider the following term rewrit-
ing rule, used to compute the multiplication on natural narsbnul t (x,succ(y)) —
add(x,mul t (x,y)). When applied, this rule duplicates the term corresponthrte ar-
gumentx. In termgraph rewriting, one is able to share it instead hst there is no need
for extra memory space. This sharing operation can be agslily formalized as an op-
eration with one input and two outputs, whose semantics igpightion operation. In
polygraphs, one can have many such operations with manutsygxplicitely represented
and handled.

This is a key fact in our results on implicit computationahgaexity: indeed, the
interpretations we consider here, callgolygraphic interpretationg5,7], can reflect the
fact that two outputs of the same operation have some linkgdes them, as we will see
with the example of the list splitting function used in "diei and conquer” algorithms.
This allows us to give complexity bounds where traditionalypomial interpretationsi2]
cannot with the method described 1] or to give better bounds, as indicated here and
in [7]. Moreover, the polygraphic interpretations give sepatahformation on the spatial
and on the temporal complexities of functions.

This document is an overview of ideas and results from a paptre same authorg],
containing more comments, technical details and completefg. In sectior2 we intro-
duce the notion of polygraphic program in an informal wayegihe corresponding se-
mantics we consider, introduce the leading example we densnamely the polygraphic
program computing the "fusion sort” on lists, and prove thalygraphic programs form a
Turing complete model of computation. In secti®nwe recall the notion of polygraphic
interpretation, give examples, define the notion of simglygraphic program and prove
results on termination of polygraphic programs. In sectipmve give polynomial com-
plexity bounds for simple programs and prove that they dtar&ze the claseTIME of
functions computable in polynomial time by a Turing machine

2 Polygraphs as a computational model

The general definition of polygraph can be found in documémgitalbert Burroni, Yves
Lafont and Franois Mtayei3[9,13,10,11]. Here we give a rewriting-minded presentation
of a special case of polygraphs, seeing them as rewritirntgsgson algebraic circuits.

Definition 2.1 A monoidal 3-polygraplis a composite object consistinga#lls pathsand
compositionrganized intalimensions

Dimension Icontains elementary sorts calléecellsand represented by wires. Their
concatenationg Yyields product types calletl-pathsand pictured as juxtaposed vertical
wires. The empty produetis also al-path, represented by the empty diagram.

Dimension 4s made of operations calleticells with a finite number of typed inputs
and outputs. They are pictured as circuit gates, with inptithe top and outputs at the
bottom. Using all thel-cells and2-cells as generators, one builds circuits calepaths
using the following two compositions:
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

The constructions are considerstbdulosome relations, including topological deforma-
tion: one can stretch or contract wires freely, maveells, provided one does not create
crossings or break wires. Eackcell and eacl2-path f has al-paths;(f) as input, its
1-source and al-patht; (f) as output, itd-target The compact notatiofi: s (f) = t;(f)
summarizes these facts.

Dimension 3contains rewriting rules called-cells They always transform 2-path
into another one with the samesource and the sanietarget. Using all thé-cells,2-cells
and3-cells as generators, one can build reductions paths calfgaths by application of
the following three compositions, defined flbigoing fromf to f’ and G going fromg to
g": Fxo G goes fromf xo g to f’ %o g'; whent; (f) = s1(g), thenF x; G goes fromf x1 g
to f' x1 g’; whenf’ = g, thenF x, G goes fromf to g’. These constructions are identified
modulosome relations, given ir6], where their3-dimensional nature was explained. The
relations allow one to freely deform the constructions ireasonable way: in particular,
they identify paths that only differ by the order of applicatof the same-cells on non-
overlapping parts of &-path. A3-path iselementarywhen it contains exactly ongcell.
Each3-cell and eacl3-pathF has a2-paths, (F) as left-hand side, it8-source and a2-path
t,(F) as right-hand side, it3-target The notatiorF : s,(F) = t,(F) stands for these facts.

For monoida3-polygraphs, rewriting notions are defined in a similar wayf@ term
rewriting systems, with terms replaced Bypaths, reduction steps by elementarpaths
and reduction paths hy-paths p]. Hence, anormal formin a polygraph® is a2-pathf
which is the2-source of no elementadrpath. The polygrapk? terminateswhen it does
not contain infinite familiegF,, ).cn Of elementanB-paths such that;(F,,) = s2(Fn11)
for all n. Other rewriting properties, such egnfluenceor convergencare also defined in
an intuitive way.

Definition 2.2 A polygraphic progranis a monoidaB-polygraph such that:

* |ts 2-cells are divided intasstructure 2-cells constructorsandfunctions The structure
2-cells consist of on(>< : &% ( = (% & for each pair ofl-cells (&, ¢), plus one
A 1 &= Exo & and oned : & = « for eachl-cell £. The constructors ar2cells such
with a 1-cell as1-target. The functions are adycells.

* Its 3-cells are divided betweestructure 3-cellsandcomputation 3-cellsThe structure
3-cells are given, for every constructs? : x = & and everyl-cell ¢, by:

x, ¢ x & ax ¢ X X X X x
¢ £ T & £ ¢ £ 0 EE £ &

The2-targets of the-cells ofA§ use structur@-paths built from the structur2-cells by
using the following structural induction rules:
X &

[ e
= = | S = == AED =« A = ] ==
C & x

& % & ¢ Expx * x %0 & x &
] ek e —. e - e

The computatiors-cells are3-cells whose2-source is of the shapex; ¢, with ¢ a
function 2-cell andt a 2-path built only with1-cells and constructors. Furthermore,
there is a finite constant that bounds the number of stru@w@ls in the2-target of
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

each computatiod-cell.

e For the present study, we assume that there exists a precamperform each step of
computation: more formally, for evedtpathF : f — g containing exactly oné-cell,
the map givingg from (f, F) is computable in polynomial time.

Example 2.3 We consider the following polygraphic program with oheell, two con-
structorso ando, two functions” and'¥’ and four computatios-cells (we do not give
the structure cells):

Pol Yo¥ et o

With the constructors, one can represent the natural numbesingo for 0 ando for the
successor operation, yieldin@gatht,, with zero input and one output. Furthermore, one
can check that this polygraph is convergent and that, dgiveandt,,, the normal form of
(tm *0 tn) *1 97 IS timn, While the one of ty, xo tn) *1 W iS tin.

Hence this polygraphic program computes the addition amdithitiplication on natural
numbers: thd -cells are the data types, tBepathsé = « built only from constructors are
the values, while the result of the application of a functighwith n inputs to well-typed
values(ty, ..., tn) is the normal form of th@-path(t; %o - - - xo tn) %1 §. This semantical
interpretation is formalized thereafter.

Definition 2.4 [Semantics] Let us fix a polygraphic progrdhn If & is al-cell, aterm of
type & is a2-path built only with constructors and with as 1-target. Avalue or closed
termis a term with no input. The set of values with typés denoted by (¢). Thedomain
of computationof P is the multi-sorted algebra made of the family of all the S&t§)
equipped with the operations given, for each construgto€ xg - - - xo &n = &, by the
map still denoted by:

Y V(&) x - X V(Er) = V(E)
(t1)---)tn)H(t1*0"'*0tn)*1Y-

Let us consider a functiohfrom V(&) x -+ x V(&) to V(1) X -+ - x V(). Then?
computed if there exists &-path, still denoted by, from & %q - - - %0 &m t0 (3 %0« + %0 Cn,
such that, for every familyty, ..., t;,) of values inV(&1) x - - - x V(& ), the2-path(ty xg
-+ %o t;m ) %1 f normalizes into the family(ty, ..., t;n) of values inV((q) x -+ x V().

Example 2.5 Let us consider a polygraphic program that computes, amdamgr dunc-
tions, thefusion sortfunction on lists of natural numbers. It has tWecells, nat for
natural numbers arldi st for lists of natural numbers. Its other cells, apart fronuctiure
ones are:

» Constructors: on® : x = nat for each natural numbet, plusQ : x = | i st for the
empty listand<” : nat xo | i st = |i st for the list constructor.

« Functions: the mai® : | i st = | i st for fusion sort, together withh, : i st =
li st xoli st forsplitting lists and¥” : 1 i st xo | i st = | i st for merging them.
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2 POLYGRAPHS AS A COMPUTATIONAL MODEL

e Computatior3-cells:

e S
L =200 ff‘@Q g%@@

Yol o] €S €S

Note that the last two rules for tH® function are not conditional: there is exactly one of
them for each paitp, q) of natural numbers, dependingpf< q orp > q. However, these
two conditions are computable (in linear time), prevensnger-Turing computations. We
have chosen a simplified representation of natural numblkichveonsiders them as being
predefined, at the "hardware level”, together with theirdizate <. The reason for this
choice is to postpone the study of modularity and ofitfiet hen-el se construction to
subsequent work.

Theorem 2.6 Polygraphic programs form a Turing-complete model of cotation.

Proof. Here we give a sketch of the proof, while the complete one @afobnd in P].
Any Turing machine can be translated into a polygraphic mwgwhose values are the
words written in the alphabet of the machine and whose fanstare the transitions steps
generated by the machine transition function. More forynalle considered polygraphic
program has oné-cell, plus:

« Constructors: one : 0 = 1 for the empty word plus on@ : 1 = 1 for each letter.

« Functions: ond : 1 = 1 for the function to be computed plus oseepqq = w :
2 = 1 for each state; and each lettea., including the blank symbadi.

« Computation3-cells are given thereafter, the first rule initializing tbemputation, the
four subsequent families replicating the transitions ef Tluring machine and the final
family starting the computation of the result:

R
% = ﬁ % = % both whens(q,a) = (q’,c, L)
$ = % $ = % both when(q,a) = (q’,c,R)

s = O
Let us asume that the machine is in a st@teeading a letten, with wy andw, the two
words respectively written on the left af from right to left, and on the right af, from left

to right. Then, this state of the system is represented b-fieh (w1 xo Wy ) %7 w Itis
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3 POLYGRAPHIC INTERPRETATIONS AND SIMPLE PROGRAMS

straightforward to check that each step of the Turing macborresponds to an elementary
3-path of its polygraphic version. O

3 Polygraphic interpretations and simple programs

Intuitively, a polygraphic interpretations se2gaths as electrical circuits, whose com-
ponents are thei2-cells. The circuits have currents plugged into their ispatnd these
currents propagate into the circuits according to the ‘&ntrmaps”e. associated to each
2-cell . A circuit produces heat, given by the sum of the "heat mdpsg~of the 2-cells

it is made of. In the case of polygraphic programs, we will thedt current and heat maps
can be used to give information respectively on the spaitialand on the temporal size of
computations. Polygraphic interpretations have beendoired, in a more general version,
in [5].

Definition 3.1 A polygraphic interpretationof a polygraphic progran® consists into a
mapping of eacA-pathf with m inputs anch outputs onto two monotone maps= & :
N™ — N" and[f] = &8 : N™ — N, such that the following conditions are satisfied:

* For everyl-pathx of lengthn, we havex, = Idf; and[x] = 0.
e For every2-pathsf andg, the following equalitities hold when defined:

e e e . L
Given an interpretation andZacell ¢, we denote bypl thej component of the map..
An interpretation ofP generates a binary relation denotedsbyit is defined, or2-pathsf
and g with the same2-source and the sanietarget, byf = g when the two inequalities
f.(1) > g«(i) and[f](i) > [g](i) hold for every possible family of natural numbers. An

interpretation iscompatiblewith a 3-cell « whens;(«) = t2(x) andweakly compatible
with o if sy (o) = to( ).

It was proved in }] that an interpretation is entirely determined by its valoa the2-cells
of the polygraph, that the binary relatiohis a terminating strict order and that context are
strictly monotone with respect to it. These are steps tosvard

Theorem 3.2 (B]) If a polygraphic program admits an interpretation which @nepatible
with all of its 3-cells, then it terminates.

Example 3.3 Let us assume that we have a current nigp on a polygraphic program
such that the following conditions hold:

« If § is a constructor witn inputs, theﬁ*(i1 yeryin) > 1+ Fin.

« One structur@-cells, we have< (i,j) = (j,1) anda (1) = (i,1).

We define a heat mags as follows:

« If ¢ is a constructor or a function, thgl] ; = 0.

« On structure-cells, we have <] (1,j) = ij, [A]¢ (1) = i and (6] (1) = 1.

It is proved in P] that these values generate a polygraphic interpretatiompatible with
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3 POLYGRAPHIC INTERPRETATIONS AND SIMPLE PROGRAMS

the structure3-cells. Hence theorer®.2 tells us that a polygraphic program without com-
putation3-cell terminates.

Definition 3.4 Given a current magp ), on a polygraphic program that satisfies the condi-
tions of example8.3, the heat map]s is calledstructure heagenerated by-)..

Definition 3.5 We denote byN[x;, - - - , x,,] the algebra of polynomials in variables and
coefficients inN. Let P be a polygraphic program. A polygraphic interpretatiosiraple
when the following conditions are met:

¢ For any2-cell ¢ with m inputs andh outputs, the mapi}lz1 cpi and[¢] are polynomi-
als ofN[x1,...,xm].

« If iy is a constructor witl inputs, theny, = 3", x; + a, with 1 < a, < a, wherea
is a constant depending on the program. Moredyér= 0.

* On structure2-cells, one has<(i,j) = (j,1) andA\(i) = (i,i). Moreover, structure
cells produce no heafA] (i) =0, [><] (i,j) =0, [6] (1) =0.

* For every functionp with m inputs andn outputs and for every familfi,, ..., i) of
natural numbers, we haye L @L(ir,...,im) > i1+ +1im.

A polygraphic program is callesimplewhen it admits a simple polygraphic interpretation
which is compatible with all of its computatiakcells.

Theorem 3.6 A simple polygraphic program terminates.

Proof. Let P be a simple polygraphic program and (et. and[:] be the current and heat
maps of a simple interpretation, compatible with all the patation3-cells of . Itis a
direct computation to check that such an interpretationeiakly compatible with the struc-
ture3-cells of P. Hence, we deduce th&tterminates if and only if the polygraphic program
Q does, wherd) is built from P by removal of the computatiodcells. The mag:). also
satisfies the conditions to generate a structure heafsiyggroving the termination of.0

Example 3.7 Let us prove that the polygraphic program of exantkis simple. Let us
consider the interpretation generated by these values:

* @, =1 o =1 Y.(j)=i+i+1]

c o (=1 4 (1)=([i/2],[1/2)), W, G =i+]

- [o] () =21, [A]D) =1 [¥]Lj)=1i+].

We have used the notatiofi§ and |- | for the rounding functions, respectively by excess
and by default. This interpretation meets the conditionglefinition 3.5 and, thus, is
simple. Now, one has to check that it is compatible with all dtomputatiors-cells: we

give some of the computations for the Idstell of the function®. Let us start with(-)x.
On one hand:

<§> k) = (Y) (LY.0.K) = 0,05, (L.0,K) = t+j+k+2

% *
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4 COMPLEXITY OF SIMPLE PROGRAMS

And, on the other hand:

(Lj,k) = i+j+Tk/2[+|k/2] +2 = i+j+k+2

Now, let us considef]. For the2-source of the-cell, one gets:

lgl (1,j,k) = [@] G+i+k+2) =2-[i+j+k+2)7~

And, for its 2-target, (1,7, k) is equal to:

(] (K)+ [@] L4 [k/21+1)+ [@] G+ [k/2) + 1)+ [W] i+ [k/2] + 1,5+ [k/2] + 1)
=2 (i+[k/2]+ 1) +2- G+ [k/2] + 1P +i+j+2k+2.
We conclude by considering two cases, depending on they qudiriit.

Example 3.8 For the polygraphic program of exam®e3, the following values generate
a simple interpretation which is compatible with the foumgutation3-cells:

co, =1, O,1=i+1, A, 1)=0G1, V.0 =i+), (i) =1
« o] =0l =[4A] @) =[6] 1) =0, [¥]Gi) =1 [¥]{i)=C({i+1).

4 Complexity of simple programs

Definition 4.1 Let P be a polygraphic program. Kis a2-path of P, we denote by/f|
the number of-cells f is made of. IfF is a3-path of P, we denote byi|F||| the number of
3-cellsF is made of.

Let P be a simple program with a fixed interpretation madgé pfand[-]. We want to prove
that (-), is a good estimation of the size of values computedbgiven by||-||, while []

is one for the size of the computations, given|by|. Once again, the complete proofs are
in [2]. By induction on the size of values, we prove tfigi, is an estimation of the size of
values:

Lemma 4.2 For every valuet, the inequalities|t|| < t, < alt] hold inN.,

Using the properties of the polygraphic interpretation wesider and lemmé.2, we prove
that the size of intermediate and of final values are boungledgmlynomial in the size of
the initial values:

Proposition 4.3 Let ¢ be a function withm inputs andn outputs. LetP, be the poly-
nomial inN[x1,...,xm,] defined byP, = Z}L] k(axq,...,axm). Lett be a family of
values of typa; () and let us assume thak ¢ reduces into 2-path of the shape x; c,
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4 COMPLEXITY OF SIMPLE PROGRAMS

whereu hasp outputs. Then the inequalit[}’:1 W, < Po(llt', ... [[t™]) holds. In

particular, if u = @(t), the inequality |@(t)l| < P (l[t']],...,[[t™]) holds.

Example 4.4 If one computes these polynomials for the simple polygragnogram of
example2.5, one sees that, for any listthe sorted Iis#(t) and all the intermediate values
computed to reach the result have their sizes bounded byzineft:

P+(x) = ¢*(1 “x) = x, Pv(x,y) = V*U -x,1-y) = x+uvy,
Palx) = al(1-x)+&2(1-x) = [x/2] + [x/2] = x.

For the polygraphic program of exam@#e3, one getst(x,y) =x+y ande(x,y) =
xy. Hence, the current maps give us information on the spaialptexity of the computa-
tion, separated from the length of computations.

Now we interest ourselves into polynomial bounds for thgiemof computations. We start
by a technical lemma, which proves that, during a computatlee potential structure heat
increase due to the application of a computafierell is polynomially bounded by the size
of the arguments.

Lemma 4.5 We denote b the constant bounding the number of structreells in the
2-target of every computatiodrcell. Lete be a function withm inputs. We denote I,
the polynomialK - Pé. Lett be a family of values of typg (¢), let f and g be 2-paths
such thatt x; ¢ reduces intof which itself reduces intg by application of a computation
rule x. Then the following inequality holds:

[fls + Se (It ..., [t™]) > [d]s.

Proof. The complete, technical proof is i8][ Here we recall the main reasoning steps. We
denote byx : a = b the computatio-cell used to reducéinto g. We decomposéandg

to makea andb appear and use the properties of current and heat maps tludertbat
the inequality[f]s + [bls(i1,...,im) > [g]s holds, for some natural numbeirs ..., im.
Then we prove thdbls(is, ..., im) is polynomially bounded by the size bf By definition

of the structure heatbpls(is,...,1;n) is the sum of all the structure heats produced by
the structure2-cells b is made of. Then we use propositidn3 to prove that the current
incoming in each input of each structutecell of b is bounded byP, (|/t']], ..., [[t™]).
Then, by definition of-]s on structure-cells, we conclude that the structure heat produced
by each one is at moﬁ%(\\ﬂ II,...,[[t™]). Finally, we use the fact thatis the2-target of

a computatiors-cell to deduce that there is at masstructure2-cells inb. O

Example 4.6 For the polygraphic program of examfe5 we haveK = 1, §4(x) = X2,

Sa(x) = x> andSy(x,y) = (x + y)?. For the one of exampl@.3 we haveK = T,
Se(x,y) = (x +y)* andSy(x,y) = x*y*.

Now let us prove that the length of a computation is polyndisniaounded by the size of
the arguments.

Proposition 4.7 Let ¢ be a function withm inputs. We define the following polynomials:

Qo(x1,...,xm) = [ol(axy,...,axm) and Rep = Q¢ - (14+S4).
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4 COMPLEXITY OF SIMPLE PROGRAMS

Lett be a family of values of typg (@), let F be a3-path with2-sourcet x; ¢, made ok
computatior3-cells andl structure3-cells. Then the following inequalities hold:

k< Qollt'll,.. [It™N)  and 1< QoIt'l], ..., [[K™N) - St ..., [[t™]).

As a consequencglF||| < R (I[t']],...,[[t™]) holds.

Proof. We decomposé into ax,-composite of elementary computatidfpaths followed
by structure3-paths. Using the fact that the heat map we consider islgtdetreasing on
computation3-cells and weakly decreasing on structdreells, we deduce thdt x; ¢] is
minored byk. We use the properties 6f and lemmad.2to get the bound we seek @n
Then, we apply propositiod.7 to each of the structurg-paths we have isolated. We sum
up the resulting inequalities and use the facts that ¢]s = 0 and[t;(F)]s > 0 to get
k-Se([t', ... [[t™]) > 1. We deduce the inequality drfrom this one and the one dn
We conclude by using the equalityF||| = k + L. O

Example 4.8 For the functions of exampl2.5, we haveQ¢(x) = 2x2, QA(X) = x and
Q,(x,y) = x +y. For example, let us fix a list. The polynomialQ, tells us that,

during the computation of the sorted I@tt), there will be at mostt|| applications of a
computatiord-cell. The ponnomiaR¢ guarantees that there is no more thaﬁ (1 +HtH2)
applications of rules. On the examples we have considehedpalynomialQ, gives a
bound that is close to known ones but the polynorRiglives a very overestimated bound.
To get a better estimation, we will have to work on the streectieat increase bourid, .

Theorem 4.9 Functions computed by simple polygraphic programs are thxaeriME
functions.

Proof. We start by proving that functions computed by simple paydic programs are in
PTIME. Propositiord.7tells us that the length of any computation in such a polylytae
polynomially bounded by the size of the arguments. Furtibeemeach step of computation
can be done in polynomial time with respect to the size of tieenit2-path: we find a redex
in a directed acyclic graph with decorations then replabg the corresponding reduce and
both operations can be done in polynomial time.

Now let us prove that angTIME function can be computed by a simple polygraphic
program. The first step is to translate a Turing machine @guaipvith a clock into a poly-
graphic program. We fix a functiofiin PTIME, a Turing machinévl that computed
and a polynomiaP that bounds the length of the computation. We consider a obfye
polygraphic program of examp&3which computes addition and multiplication of natural
numbers, with itd -source denoted hyat . Let us note that this polygraphic program com-
putes any polynomials, includin®. Then we extend it with a variant of the polygraphic
Turing machine of sectio@, made of al-cell non; its constructors are the empty word
o : non = non and each lette® : mon = non of the alphabet o}M; its functions are
the main¢ : mon = non for f, plus a size functio_ : mon = nat, plus the modified

w :nat xo Mon xo "on = non for each statey of M and each lettea in the alphabet
of M, including the blank symbdf; its computatiors-cells are:
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4 COMPLEXITY OF SIMPLE PROGRAMS

= I EE T B

% = w w = L'ﬁﬁj both when(q, a)
wa % WE W both whend(q,a) = (q’,c,R)

Then, one checks that this polygraphic program mimics #esition of the original Turing
machineM and, thus, computes We conclude by checking that the following polygraphic
interpretation, extending the one already built on natawahbers, is simple and compatible
with each computatiod-cell:

co, =1, ¢ (1)=i+1, m (i)=1i G (i,jk)=it+j+k & (i) = P(i)+i+1.
om0 =i [ (5,00 =i, [@] (1) =PI+ Pu(i) + i+ 1.

(a'yc,L)
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Abstract

We study conditions for a concurrent construction of proof-nets in the framework of linear logic following

Andreoli’s works. We define specific correctness criteria for that purpose. We first study the multiplicative

case and show how the correctness criterion given by Danos and decidable in linear time, may be extended

to closed modules (i.e. validity of polarized proof structures). We then study the exponential case and give

% correctness criterion by means of a contraction relation that helps to discover frontiers of exponential
oxes.

Keywords: linear logic, proof-nets, logic programming, focalization.

1 Introduction

Girard in his seminal paper [9] gave a parallel syntax for multiplicative linear logic
(MLL) as oriented graphs called proof-structures. Let us recall that a MLL formula
is either an atomic formula A, a negation of an atomic formula AL, or built with a
binary connective ® or %. In the original definition, a proof-structure for MLL is
constructed by means of the following binary links:

A A
®-link: b 2-link: b axiom-link: N
@ @ A AL
A® B A® B
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FOUQUERE AND MOGBIL

where every occurrence of formula is a premise of at most one link and is a conclusion
of exactly one link. A correctness criterion enables one to distinguish sequentializ-
able proof-structures (the so called proof-nets) from "bad" structures (that do not
correspond to proofs in the sequent calculus). After Girard’s long trip correctness
criterion, numerous equivalent properties were found. In particular, Danos and
Regnier [7| proved that switched proof-structures should be trees, where switching
is done by deleting one of the premises of each %-link. Danos [6] showed that it is
the case iff the proof structure rewrites to e (® is called a contracted node):

ke VVHV ® - *HT

While a lot of research has been done on finding efficient correctness criteria for MLL,
it still remains to study correctness criteria in case of polarized proof-structures in
MLL, and broaden it to the exponential case. First used by Andreoli in Logic
Programming [1] and also considered in Girard’s works [10] and in Laurent’s works
about Polarized Linear Logic [13], this concept of polarization allows to consider
clustered structures. Recently, polarized proof structures arose naturally in logic
programming models [2,3,4]. The basic objects we consider are then proof structures
with two strata we call elementary bipolar modules, that may be composed to get
modules. We recall the multiplicative case in the following section (the reader may
find in [8] extension to open modules). We define a correctness criterion that takes
care of the parallel structure of modules, extending the Danos criterion. In section 3,
we analyze how modules may be generalized to take care of exponentials.

2 The multiplicative case

We consider in this section the extension MLLu of MLL with 1 the unit of ®.
Formulae F' of MLLu are given by the following grammar (we allow 1 either alone
or as part of a tensor):

F=1|G
G := A| A+ atomic formula or its negation

1Ge1 198G |GG |GRG

A binary sequent calculus for MLLu is given in Fig. 1. Let PS be the directed
graphs where edges are labelled by formulae of MLLu and built with the following
links (n > 1):

A A A Ay

®-link: 2-link: axiom-link: ml 1-link: %Dl
A®--®A, AR ...TBA,

possibly with edges pending downwards. Elements of PS are still called proof struc-
tures. Formulae labelling pending edges are the conclusions of the proof structure,
nodes with pending edges are called conclusion nodes. A proof structure is sequen-
tializable if the sequent defined with the conclusions of the proof structure is provable
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Fig. 1. Binary sequent calculus for MLLu.

in MLLu. A sequentializable proof structure is called a proof-net. Labels on edges
are omitted when clear from the context.

Proposition 2.1 Let © be a proof structure of PS, 7 is a proof-net (i.e. sequen-
tializable) iff = —* o where — is given by the following rules:

R B VVW (3) ?H ’
w =Y (5)*7 © @ -

In case (4), there must exist at least one edge between the two nodes.

The proof of the proposition follows from the standard one on binary proof
structures for MLL [6], and the following remarks: ® and % are associative and
commutative, the 1-ary % connective is by convention the identity, 1 is a unit for ®.

We first give the definition of an elementary bipolar module (EBM) and give the
correspondence with proof structures. We then define a module as the composition of
EBMs. A module is correct if the corresponding proof structure is sequentializable.

Definition 2.2 [EBM]| An EBM M is given by a finite set H(M) of propositional
variables (called hypotheses) h; and a non empty finite set C(M) varying over k of
finite sets Ci(M) of propositional variables (called conclusions) ci. Variables are
supposed pairwise distinct.? The set of propositional variables appearing in M is
noted v(M). Tt is denoted as a directed graph with labelled pending edges and two

kinds of nodes, one positive pole under a non-empty finite set of negative poles:
a K

hi
The set of pending edges of an EBM M is called the border b(M).

The proof structure corresponding to an EBM is given by the following transfor-
mation on poles. The converse transformation requires the definition of BMs defined
later. el

Jk ——

ika(M)zﬂ: V — @P,lfck(M)#@ V — /

4 This restriction is taken for simplicity. The framework can be generalized if we consider multisets (of
hypotheses and conclusions) instead of sets, and add as required a renaming mechanism: the results in this
paper are still true.
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An EBM M may be equivalently defined as a (type) formula (M) in the dual lan-
guage of MLLu (recall that A — B = A+ ® B): t(M) = (®, hi) —o (2% (), ),
where we use the convention that 7§ Fj, = @, Fr, = F1 when the domain of k is of
cardinal 1, and if the domain of i is empty, (&), hi) — C = C and if the domain of
ji for some k is empty, (®]k ci’“) = 1. The reader should care that this supposes
a bilateral sequent calculus, although the logical reading of an EBM (or of a proof
structure) is unilateral. Three kinds of EBMs are of special interest: An EBM is
initial (resp. final) if its set of hypotheses is empty (resp. its set of conclusions is
empty). An EBM is transitory if it is neither initial nor final. Initial EBMs allow
to declare available resources, though final EBMs stop part of a computation by
withdrawing a whole set of resources. Transitory EBMs are called definite clauses
in standard logic programming.

Definition 2.3 [BM] A bipolar module (BM) M is defined with hypotheses H (M),
conclusions C(M), and type (M), inductively in the following way:

e An EBM is a BM.

e Let M be a BM, and N be an EBM, let I = C(M)NH(N), their composition wrt
the interface I, Moy N is a BM with the multiset of hypotheses H(M)U(H(N)—1),
the multiset of conclusions (C(M)—I)UC(N), the type ¢(M)®%(N) and variables
v(M)Uv(N).

The interface will be omitted when it is clear from the context. Note that the
interface may be empty. The translation from proof structures of PS to BMs is
given by the two following rules, plus rules not explicited here due to lack of space
that take care of polarity (a unary tensor node (resp. Par) is added in between
if (resp. a negation of) a propositional variable is a premise of a Par node (resp.
tensor)) and the constant 1:

«

— - 7> where p is a fresh atomic for-
mula

Considering BMs in place of proof structures for MLLu has valuable consequences
in terms of simplicity of correctness criteria as one can take care of the bipole
structure of BMs more directly than it is the case with a binary structure.

Definition 2.4 [Correctness (wrt sequentialization)] Let M be a BM, M is correct
if the corresponding proof structure in PS is sequentializable.
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Fig. 2. Big step reduction relation.

Sequentialization means that there exists a formula C' built with the connectives
® and %, and the variables C(M) such that the sequent H(M),t(M) F C is provable
in Linear Logic.

A closed module is a BM without any pending edges, i.e. with the sets of hy-
potheses and conclusions empty. Correctness of closed modules may be tested either
in terms of provability in a sequent calculus or by means of correctness criteria for
proof structures. In the following, we consider the correctness criteria of Danos [6]
using a contraction relation and explained in the previous section, and also the one
given by Danos and Regnier [7| that uses switchings: let m be a proof structure
with binary links and S(w) the set of (switched) graphs obtained from 7 by remov-
ing exactly one premise edge for each % link, w is a proof net iff each graph in
S(m) is acyclic and connected. One generalizes this definition to n-ary connectives
by introducing generalized switches: each n-ary % connective induces n switched
graphs. One still can define switched proof-structures and a criterion generalizing
Danos-Regnier correctness criterion on PS: a proof structure m is a proof net iff
the graphs in S(w) are acyclic and connected. A closed module M is DR-correct if
the proof structure M* associated to M is a proof net wrt the previous criterion.
We abusively refer to the module M instead of the corresponding proof structure
M* in the following, speaking of for instance switched module instead of switched
proof structure. We immediately have the following proposition as a corollary of the
Danos and Regnier criterion theorem:

Proposition 2.5 Let M be a closed module, M is correct iff M is DR-correct.

We give below a (big step) reduction relation that takes care of the focalization
property. Though a Danos-like relation would reduce each step one variable, our
formulation uses as a whole the structure of a module thanks to focalization. The
focalization property states that a sequent is provable iff there exists a proof such
that decomposition of the positive stratum of formulae is done in one step. Consid-
ering bipolar modules, it means that one may define a reduction relation such that
each step reduces one positive-negative pair of nodes.

Proposition 2.6 (Stability) Let M and N be two closed modules such that M —
N, M 1is correct iff N is correct (see Fig. 2).

Proof. One can define a function from the switched structures of the module on
the left of the relation onto the switched structures associated to the module on the
right such that a switched structure from the left is acyclic (resp. connected) iff the
corresponding switched structure from the right is acyclic (resp. connected). O

Theorem 2.7 (correctness) A closed module M is correct iff M —»* %
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Proof.
e Suppose M —»*g Asg is correct, by prop. 2.6, we deduce that M is correct.

e Suppose M is correct. Let N be a normal form of M wrt —», then by proposi-
tion 2.6, N is correct. Let us define a partial relation on negative poles of N: let
m and n be two negative poles, m < n if dp a positive pole such that m is linked
to the bottom of p and n is linked to the top of p. We consider the transitive
closure of this relation. We prove a contradiction if N is in normal form, correct
and different from Y:

- either there is no maximal negative pole. Let us suppose 3m such that m < m.
Then there exists one cycle containing m in the module alternating positive and
negative poles. We can then define a switching function on the module (choosing
the correct links for negative poles) such that the switched module has a cycle.
Hence contradiction with the fact that N is correct.

- or let m be a maximal negative pole and p the corresponding positive pole.

If p has other negative poles, N is not in normal form as we can omit the

maximal negative pole by neutrality.

If p has no other negative poles and no incoming link then N is either equal to
or not connected hence not correct.

If p has no other negative poles and each incoming negative pole has at least
one link going to another positive pole, then one can define a switching function
using for each of these negative poles one of the links that does not go to p:
the switched module is not connected. Hence contradiction with the fact that
N is correct.
If p has no other negative poles and there exists one incoming negative pole
with the whole set of links going to p, the first rule applies: N is not in normal
form.

O

Note that this proof extensively uses the bipolar nature of modules. Moreover,
the proof may have been given considering minimal poles in place of maximal poles,
and for each proof only one of the two reduction rules is sufficient and necessary!
Finally, the same technique Guerrini [11] used for Danos criterion may be applied
here to get a linear algorithm. We detailed in another paper the extension of the
technique presented before to open modules as it is a necessary step towards the
specification of a logic programming language based on bipolar modules [8].

3 Dealing with exponentials

3.1 Multiplicative exponential linear logic (MELL)

Adding exponentials to the language obviously increases its expressivity: it allows
for representing reusable resources. In linear logic, the ’of course’ modality ! has
this main property: !4 — A ® -+ ® A. Technically, three operations are necessary:
contraction, dereliction and weakening. The first operation states that !'A is dupli-
cable. Dereliction allows to consider the classical formula !A as the linear one A.
The last operation states that !A may be forgotten. The dual modality 'why not’ ?
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may be interpreted in the following way: ?A' waits for the ’classical’ resource !A.
This promotion operation is more complex than the other operations: in terms of
proofnets, correctness is assured if a 'box’ in the proof net characterizes the context
(and this context has to be correct by itself). Entries of such a box are given by one
!'and a set of 7.

3.1.1 From MELLu to ?-EBMs.

The translation from formulae of MELL to modules is not as easy as it is without
exponentials. We consider an extension MELLu of MELL with the neutral element
1 for ®, a formula F' of MELLu is given by the following grammar:

F=1|G
G=A|A"|GR1|1®G |GG |GRG|?G|!G

Converting from formulae to modules requires the use of polarization and focal-
ization. Focalization allows to consider n-ary connectives. Formulae are polarized
negatively or positively according to their main connectives, considering conveniently
that variables A, B,... are positive whereas their negations A-, B',... are nega-
tive. A precise study of the exponential connectives leads to the acknowledgment
that exponential connectives change the polarity of formulae: if A is a positive for-
mula, ?A is negative whereas ! A+ is positive. Hence exponential connectives may be
split into two parts: !4+ = [fA+ and 74 = 1HA. The shift connectives | and 1 do
the changing of polarities. The introduction of shift connectives may be generalized
also to the linear case whenever there is a change of polarity. The two modalities b
and f express exponentiality.

We consider a slightly different version of a polarized system as it was designed
by Boudes [5] or Laurent [13]: the system LLyo1 given by Laurent takes care of
multiplicative as well as additive connectives where atomic formulae are always ex-
ponentialized. Following our motivations, our language ,MELLyc; is restricted to
the multiplicative case for simplicity and atomic formulae may be linear or expo-
nential. Finally we use n-ary connectives and the decomposition of exponentials is
explicit. The grammar for , MELLpc; is given in the following way where the set of
formulae is explicitly split into positive (P,...) and negative (N,...) formulae (A
is a positive atomic formula):

P = Qicrpi | M(icspi) N := Brer vk | §(Brex vi)
p = A | IN v o= At | 1P

We keep as convention that a 1-ary tensor is the identity and a O-ary tensor is
the tensor unit 1. Moreover, one can remark that defining 1 as [§T, where T is
the neutral for the additive connective &, is coherent with our setting and may be
useful when extending our framework to additives. Nevertheless, in the following,
the standard rule for 1 is implicitly added to the calculi. One can define a n-ary
focalized sequent calculus (A is an atomic formula) as in Fig. 3. Sequents contain a
distinguished place between - and ; , they are in one of the two following forms:
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Fig. 3. n-ary sequent calculus for , MELIy01 (0-ary tensor is 1).

F : T or+ N; I where N is a negative non atomic formula and I' is a multiset
of positive formulae or atomic negative formulae. The sequent calculus is designed
such that, beginning with the distinguished place empty, search for proofs consists of
repeating the decomposition of a positive formula followed by the decomposition of
negative formulae (necessarily subformulae of the positive formula just decomposed),
until applying axioms. Note that exponential rules are as possible integrated to linear
rules to quotient the search space (e.g. the axiom rule includes (bw), (b®) manages
(c)). The following translation (=)~ from MELLu to ,MELL is such that if F
is a MELLu formula, Fygrry F' is provable iff I—nMELLpol F; is provable:

17 = 1‘ AT = A ‘(Fl ® )t = Ff o F)f T = i]jF“F*‘ = |F~otherwise

- (0®)

oF)
‘Al* = AL‘(F1 RE) =F 7 FQ_‘(?F)* = TbF*‘F* = fF%otherwise

The final step to get modules consists in flattening ,MELLy.; formulae. Bipolar
modules were previously obtained by adding atomic formulae between two strata
(say from negative to positive): let Py, P, be positive formulae, N a negative formula,
F P ® (N X P) is provable iff - P, ® (N ® Z1), Z ® P, is provable, where Z is a
fresh (positive) atomic formula. However this principle cannot be fully applied when
exponentials occur: try to flatten the (provable) sequent F A+ % 1H(B ® C), A ®
W(B+ % C*). This can be overcome by allowing exponential atomic formulae in
the language. These exponential atomic formulae are noted with f or b superscripts:
Z" and Z" are respectively defined as W1Z and 1h}Z*. We then consider the
translation (—)°: let C be a non-empty context (negative or positive), Z is a fresh
atomic formula

Ct icr pil” = CIZH° [Z ey pil°
CIP icr pil° = CIZ'°. (7 @iy i)

otherwise (i.e. empty context) P° = P,N° = | N. We still have if F' is a MELLu
formula, Fygria F' is provable iff I—nMELLpol; F° is provable. We consider now drawings
of the following kind we call 7-EBM:
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@
@)

Fig. 4. 7-EBM and proofnets

! !
AinAn, Ak
) R | R
; 7

Positive and negative poles may now be labelled: a ?-EBM is reusable when b
labels its positive part, § labels a promoted variable, brackets mean optional. * labels
an exponential atomic negative conclusion of a 7-EBM and we refer to *-edge in that
case. Roughly, the correspondence between places of exponentials in formulae and
labelled elements is the following one:

Y
(X —-Y) is drawn with the positive pole labelled b: %
1Y X
X —lY is drawn with a x-edge:
X Y
X —o?Y is drawn with the negative pole labelled f: %
X

The type of a 7-EBM generalizes the type given for an EBM (brackets mean

optional): € = [1(®ie; Bi —Tkex [7) (rer, Atk @pers Zhy))- Such a type
(clause in logic programming terminology) could be interpreted as: C is a reusable
clause iff ! is explicit. The application of a clause is allowed if the B; are available,
then one of the conclusions is fired, a conclusion being a multiset of atomic formulae
A; i, or exponential, i.e. reusable, atomic formulae an - 1f the 7 modality is present,
the multiset of conclusions is required to be reusable as a whole: not only these
conclusions cannot be used with a linear clause but such a clause cannot use linear
hypotheses. For example, consider the set of clauses {1 —- A® B,B —?C,!/(A ®
C) — L}. The corresponding module we get is drawn in Fig.4 on the left. The
figure on the right is the corresponding proof-structure (see [9,12]| for definitions
of proof structures with boxes, extended here to n-ary connectives). The traversal
of the box without the use of a b-node shows that the sequent is not provable (a
dereliction should have been applied), i.e. the 7-EBM on the left is not correct.
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3.1.2 From ?-EBMs to modules.
Definitions given in section 2 for EBMs, that is to say composition and correctness
of modules, cannot be straightfully extended to the exponential case. Obviously,
composition should satisfy identification of variables occurring on links, noticing
that x-edges can only be linked to x-edges. However, contraction needs a special
attention. For the following, we consider explicit contraction: 7-EBMs with positive
nodes labelled b, and *-edges are duplicated if necessary mimicking the property
1A —lA ® A, hence the degree of edges is always 1. The definition of composition
given in section 2 is then adapted consequently for 7-EBMs labelled b and *-edges.
For example, *-edges are duplicated as follows:

It is then possible to define the type ¢(M) of a module M as the formula given
as the Par of the formulae occurring as 7-EBMs taking care of possible contractions.
Moreover, it is possible to recover a proof-structure M* (with, as usual, contraction,
weakening and dereliction nodes) from a given module M. Finally, a module is
correct if M* is a proofnet.

3.2 2-EBMs and corresponding correctness criteria

Extending the language with exponentials yields a major difficulty due to the pro-
motion rule, as it is inherently contextual. Note that allowing b in the language (and
exclude f) is sufficient to embed the framework of the previous sections in a program-
ming language: one can consider a program as a set of (exponential, reusable) EBMs
along with a multiset of (linear, usable once) EBMs. This system already extends
classical logic programming in a straightforward way and correctness of modules
is tested with the same reduction relation given in previous section, after deleting
x-edges (application of the weakening rule) and by considering that normal forms
may contain 7-EBMs. We consider for the full language the reduction system given
by the following two rules:

Label b is put on right
hand side if option is
present on left part

Label b is put on right
L hand side if the two op-
I T tions are present on left

part

Propositions equivalent to the ones given for the multiplicative case may be

proved. Obviously, if M is a closed correct module in this fragment then the module
forget(M) built from M forgetting exponentials (omitting labels and replacing *-
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edges by normal edges) is a closed correct BM. We must also characterize normal
forms. We add to the reduction system two rules correponding to neutrality of 1
and weakening of b:

#0 0
OF 2w 4 W
Y Y,

Proposition 3.1 (Stability) Let M and N be two closed modules such that M —
N. The module M 1is correct iff N is correct.

Proof. One can define a function from left switched module onto right switched
module such that the relation and its inverse are stable wrt acyclicity, connected-
ness. O

Theorem 3.2 A closed module M is correct iff M%*g or M%*é

Proof. The proof used for the linear case is adapted here. As the reduction rules
are stable wrt correctness, it remains to prove that a correct non-terminal closed
module M can always be reduced. We consider the same relation as in proof of
Th.2.7. If maximal negative poles do not exist then there exists at least one cycle in
the forget(M) module alternating positive and negative poles. We can then define
a switching function on this module (choosing the correct links for negative poles)
such that this switched module has a cycle. Hence contradiction. So let us consider
one of the maximal negative poles, and the corresponding positive pole. We remark
that such a negative pole has no outcoming links (the module is closed and the
negative pole is maximal). If the positive pole has other negative poles, we can
omit the maximal negative pole by neutrality. Otherwise, let us study the incoming
negative poles: (1) If there is no such incoming link, then M is the terminal module.
(2) If each incoming negative pole has at least one link a going to another positive
pole as in the following figure:

then one can define a switching function using for each of these negative poles one
of the link that does not go to the positive pole we considered first. Hence the
forget(M) switched module is not connected (there are no outgoing links). Hence
contradiction. (3) Else there exists at least one incoming negative pole a with the
whole set of links associated to the positive pole: the reduction rules apply and we
are finished or this positive pole is linearly linked with b to a negative pole 5. Such
B is not f-marked otherwise it corresponds to a proof-structure with an exponential
box with two principal ports, hence contradiction. The reduction rules apply to
(and then to «) or these exists a link ¢ from [ to another positive pole as in the
following figure:
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then one can define a switching function using the ¢ link but not b: the corresponding
switched proof-structure contains an unconnected component in the exponential box
induced by the (f-marked) « negative. Hence contradiction. This holds because the
a links are all linear or none are linear. (4) Finally, there exists at least one incoming
negative pole o with the whole set of links associated to the positive pole itself not
linearly linked: the reduction rules apply. O

Corollary 3.3 If F is a provable formula then there exists a correct (closed) module
M such that t(M) = F.

4 Conclusion

We first adapt the classical rewriting criterion of Danos to the n-ary bipolar case for
testing the correctness of closed modules. We show in particular that polarization
greatly simplifies the rewriting procedure. We extend our results to the exponential
case. In particular, we give a local criterion for testing correctness of modules
in presence of exponentials. Note that current criteria presupposes that 'boxes’ are
already given, although our reduction relation helps to discover it. These results may
be useful in designing concurrent logic programming languages, in the style suggested
by Andreoli in recent papers, as it extends his works by removing constraints on
programming objects.
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Abstract

Deduction Graphs are meant to generalise both Gentzen-Prawitz style natural deductions and Fitch style
flag deductions. They have the structure of acyclic directed graphs with boxes. In [2] we have investigated
the deduction graphs for minimal proposition logic. This paper studies the extension with first-order
universal quantification, showing the robustness of the concept of deduction graphs.

Keywords: Natural deduction, universal quantification, cut-elimination.

1 Introduction

In this paper we extend deduction graphs, DGs, of [2], with first-order universal
quantification. In [2] we have presented deduction graphs for minimal propositional
logic (only implication) as a formalism for “natural deduction with sharing”. The
natural deductions become acyclic directed graphs with bozes to delimit the scope
of local assumptions. The boxes are used in the —-introduction rule. Figure 1
presents an example of a deduction graph that represents a deduction of B (node
9) from the hypotheses A—A—B and (A—B)—A (nodes 3 and 7).

The arrow represents (inverse) derivability, so e.g. node 9 (B) is derived from
nodes 6 (A—B) and 8 (A). Similarly node 6 (A—B) is derived from 5 (B) while
discharging the “free” nodes (i.e. cancelling the assumptions) 1 and 2 (A). Deduc-
tion graphs are singled out from a larger set of graph-structures, the so called closed
box directed graphs, cbdg, which basically are labelled directed graphs with boxes,
where a box is a collection of nodes, B. Each box B corresponds to a node, the box
node of B. In a cbdg it is required that two boxes are disjoint or one is contained in
the other; there is only one outgoing edge from a box node and that edge points into
the box itself; apart from the edge from the box node, there are no edges pointing
into a box.
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3,A— A—B)

(1,4) (?7f<
\ / (4,A— B) (7,(A— B) — A)
(5.8) \
[ (5.4)
6.4 — B)/

(9.B

Fig. 1. Deduction graph in the implicational fragment

To make all this precise, we repeat some definitions of [2].

Definition 1.1 A closed box directed graph is a triple (X, G, (B;)icr) where X is a
set of labels, G is a directed graph where all nodes have a label in X and (B;);er is a
collection of sets of nodes of G, the bozes. Each box B; corresponds to a node, the
box node of B;. Moreover, the boxes (B;);cr should satisfy the following properties.

(i) (Non-overlap) Two boxes are disjoint or one is contained in the other: Vi, j €
I(Biﬂ[))j =0V B;C Bj \/Bj - Bl),
(ii) (box node edge) There is only one outgoing edge from a box node and that
points into the box itself (i.e. to a node in the box),
(iii) (No edges into a box) Apart from the edge from the box node, there are no
edges pointing into a box.

Definition 1.2 Let G be a closed box directed graph. A boz-topological ordering
of G is a linear ordering < of the nodes of GG, such that for all nodes ng,n; of G:

(i) If ng —> nq, then nq < ng.

(ii) If ng is the box node of a box containing np, then n; < no.

Definition 1.3 Let (G, (B;)icr), be a closed box directed graph and let ng and ny
be nodes in this graph.

* Node nj is in scope of ng if ng is in all boxes that n; is in. In a formula:
Vi € I(ny € B; = no € B;). (So the nodes in scope of ny are the nodes that are
in ‘wider’ boxes.)

* The nodes ng and nj are at the same depth, when ng is in scope of ny, and nj is
in scope of ng. Node ng is at a greater depth than ny, when nq is in scope of ng,
but ng is not in scope of ny.

* Node nq is a top-level node if ny is not contained in any box.

e The free nodes are the top-level nodes that have no outgoing edges.

Originally, boxes were meant to border the scope of a local assumption, but now
we also use boxes to border the scope of a quantifier: When we do a V-introduction,
we create a box with box node Vz.p. To carry this extension through we have
to consider how to deal with the side condition on the V-introduction rule, which
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is stated in Gentzen-Prawitz style natural deduction as follows: “the eigenvariable
does not occur free in any of the non-discharged assumptions”. (The eigenvariable is
the quantified variable z in the introduction of Vz.p.) In DGys we want to represent
this by a more “local” side condition. A first idea would be to require that there
is no edge pointing out of the box to a formula in which the eigenvariable occurs
free, like usually done in Fitch deductions. (So when we introduce Vz.p, the box we
create should not have edges pointing out to a node ¥ with = € FV(v).) However,
this would cause severe problems in the cut-elimination procedure, as the following
graph shows. The V-box has been depicted with a dashed line.

(1,A_,p(l Vy.a(y) (2 P(z)) (7,V2.5(z)) (8, V.(S(x)— A))
\ (3, 4) (9,@)\/&57(1%,4)
: (11, A)

(4,P(z)—Vy.Q(y))
(12,v5.9(1)) (13, Vz.(Vy.Q(y)) —P(x))

(5>Vy-]fl(y))
(14,¥y.Q(y) —P(x)) |

(6, A—Vy.Q(y))

(16,Vx.P(z))

There is a hidden —-cut in node 12: The implication has been introduced in node
6 and is then immediately eliminated using node 11 to derive node 12. The cut is
hidden because nodes 6 and 12 are not at the same depth. So we first have to do
an incorporation step, moving the box with box node 6 into the box with box node
16. 2

The eigenvariable of the V-box is x. If we would do an incorporation directly,
there would be arrows from inside the V-box to the nodes 1 and 2 outside the box,
in which x occurs free. This is forbidden. We therefore first have to do a renaming
of the eigenvariable, like shown in Fig. 2.

(1, AHP(I)HV‘U Q(y)) (2 P(x)) (7,Vz.8(x)) (8,Vz.(S(z)—A))
\ (3, A) ‘.’».: (9,8(x)) (10,8(z)—A)
| = =
" (11, A)

(4,P(z)—Vy.Q(y)) 2\, u))—P(z
(12, ¥.90)) (13,Vz.(Vy.Q(y)) —P(z))

<5,Vy.+:<y>>
(14,9y.Q(y)—~P(2))

(6, A—=Vy.Q(y)) {
\ (15,P(2))

Fig. 2. Renaming of eigenvariable.

This renaming is not so trivial because it not only involves nodes inside the box
but also the z in node 16. But when we rename z in node 16, we also have to
rename it in nodes that refer to 16, and propagate that through the graph. This
could thus involve any node of GG, eventually even nodes 1 and 2. Renaming is hence
not just complicated, but it might a priori not even solve the problem.

As this looks like Gentzen-Prawitz style natural deduction, why doesn’t the

2 This is explained in detail in [2]. We now just remark that eliminating the cut directly includes adding
an edge from 3 to 11. This does not yield a DG because the edge would be pointing into box, so we have to
incorporate first.
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necessity to rename variables occur in that formalism? There is no sharing in the
example graph, so we can present the deduction faithfully as a tree in the following
way (where [A]' denotes the discharging (or cancelling) of hypothesis A at the the
application of the logical rule referred to by 1):

(A" A—P(z)—Vy.Q(y)

P(z) P(x)—Vy.Q(y) Va.S(z) V. (S(z)—A)
Vy.Q(y) ) 8(x) S(z)—A
A—vy.Q(y) A Va.(Vy.Q(y) —P(x))
Vy-Q(y) Vy-Q(y)—P(z)
P(z)
Va.P(z)

But this is not a correct Gentzen-Prawitz style natural deduction, as the variable
x occurs free in the non-discharged assumption A—P(z)—Vy.Q(y) when it gets
bound in the V-I rule introducing Vz.P(z). Apparently the V-introduction rule in
Gentzen-Prawitz style natural deduction is strict enough to prevent the need for
renaming variables during V-cut-elimination.

Our solution is to use two sets of variables: free variables, Var and bound vari-
ables BVar and to rename the free variable with a fresh bound variable when doing
the V-introduction. Furthermore, we require that the eigenvariable is unique for
that box (i.e. it does not occur anywhere outside the box). A further discussion of
the choice of syntax can be found in Section 3.1.

In Section 2 we give the definition of deduction graphs with universal quantifi-
cation, called DGys, starting from definitions for terms and formulas of first-order
predicate logic. The process of cut-elimination is discussed in Section 3, followed
by strong normalisation in Section 4. Finally, Section 5 compares DGys with devel-
opments in proof nets.

2 Definition

Different from the language of first-order predicate logic for Gentzen-Prawitz style
natural deduction [1,6], we define the language Pred of first-order predicate logic
with universal quantification and equality for deduction graphs to have two kinds
of variables. The first kind, Var denoted by u, v, w, ..., are meant to be used as free
variables. The second kind, BVar, denoted by z,vy, 2, ..., will only be used bound.
The same idea is often used for the language of first-order predicate logic for Fitch
style flag deductions [7].
We now define the terms, basic formulas, formulas and axioms of Pred.

Definition 2.1 (i) The set of terms of Pred, Term is defined as follows.
Term ::= Var | F(Term, ..., Term)

where F is a function symbol with a fixed arity and the length of the sequence
of terms following it should be equal to the arity of F.
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(ii) The set of formulas of Pred, Form, is defined as follows.
Form ::= R(Term, ..., Term) | Term = Term | Form—Form | Vz.Form[z /u]

where R is a relation symbol with a fixed arity and the length of the sequence
of terms following it should be equal to the arity of R; x ranges over BVar and
u over Var. So, in the Vz.Form[z/u| case, when we introduce the V, we also
replace a free variable (u) by a bound one (z).

We adopt the following convention for the brackets in formula: we omit brackets
around —-formulas by letting — associate to the right; V binds stronger than —;
outer brackets are not written, nor are any other brackets that do not contribute
to our understanding of the formula.

So, for example, Vr.o—1p—¢& = ((Va.p)—(p—E)). Note, however, that
Vz.P(z)—Q(z) can formally only be understood as (Vz.(P(x)—Q(z))), because
((Vx.P(x))—Q(x)) is not a formula. In these cases we will write the inner brackets
under the quantifier explicitly anyway, for the convention would otherwise lead us
to misinterpret the formula.

Because Pred deviates from the language of first-order predicate logic for
Gentzen-Prawitz natural deduction, this also means that the V-introduction for
deduction graphs cannot be similar to the V-introduction in the Gentzen-Prawitz
formalism.

The V-introduction in Gentzen-Prawitz style natural deduction is as follows:

D

¥

V.o

Where  may not be free in the non-discharged assumptions of D. This means that
x might be free in ¢, although it is bound in Vz.¢.

In deduction graphs we will introduce a fresh (bound) variable in the V-
introduction step. The advantage is then, that a deduction graph is still well-
formed, when we rename only free variables. We will use this later, in the process
of cut-elimination.

Definition 2.2 The collection of deduction graphs for first-order universal quan-
tification, DGy is the set of closed box directed graphs over IN x Pred inductively
defined as follows:

Axiom A single node (n, A) is a deduction graph,

—-E If G is a deduction graph containing two nodes (n, A—B) and (m, A) at the top
level, then the graph G’ := G with
- a new node (p, B) at the top level
- an edge (p, B) — (n, A—B),
- an edge (p, B) — (m, A),
is a deduction graph.

—-I If G is a deduction graph containing a node (j, B) with no ingoing edges and a
finite set of free nodes with label A, (n1, A),..., (ng, A), all at the top level, then
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the graph G’ := G with

- A box B with box node (n, A—B), containing the nodes (j, B) and (ni, A),
..., (ng, A) and no other nodes that were free in G,

- An edge from the box node (n, A—B) to (j, B)

is a deduction graph under the proviso that it is a closed box directed graph.

Repeat If G is a deduction graph containing a node (n, A) at the top level, the graph
G’ := G with
- anew node (m, A) at the top level,
- an edge (m, A) — (n, A)
is a deduction graph.

V-I If G is a DGy containing a node (j, ¢) with no ingoing edges at top-level for some
formula ¢ of Pred, then the graph G’ := G with
- A box B with box node (n,Vz.p[z/u]) , not containing any nodes without
outgoing edges, where we call u the eigenvariable of B if u occurs in ¢,
- An edge from the box node (n,Vz.¢[z/u]) to (4,¢)
is a DGy under the proviso that: G’ is a well-formed closed box directed graph
and u does not occur in the label of any node that is not in B.
V-E If G is a DGy with a node (n,Vz.¢) at top-level for some formula ¢ of Pred, then
the graph G’ := G with
- a node (p, p[t/z]) where none of the variables of t is the eigenvariable of any
box of G,
- an edge from (p, ¢[t/z]) to (n,Vx.@)
is a DGy.

Joiny If G and G’ are two DGys then G” = G U G’ is a DGy under proviso that the
eigenvariables of G and the eigenvariables of G’ are disjoint.

So the rules for DGy are the ones for DG with the V-I and V-E rules added and
the Join rule slightly modified.

Example 2.3 Let P and Q be unary predicate symbols of Pred. Figure 3 shows an
example of an DGy. The graph is constructed by adding the nodes in their numerical
order: first nodes 1 and 2 by Axiom, then 3 and 4 by V-E, then 5 by —-E, then 6
by V-I and then 7 by —-I.

Lemma 2.4 Let G be a DGy. Then for every variable u:

(1,Vy.(P(y)—Q(y))

(7,V2.P(z)—Vz.Q(z))

Fig. 3. An example of a DGy.
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(i) uw occurs as eigenvariable of a box of G at most once;

(ii) If u is an eigenvariable of a box B of G, it does not occur in a label of a node
outside B.

We formulate a criterion to check relatively easily whether a given closed box
directed graph is a DGy (Lemma 2.5). As an important notion for DGys is the
eigenvariable of a box, we need a similar notion for general closed box directed
graphs. So, we call a variable u a box-variable of B, if u does not occur in the label
of the box node of B, but it does occur in the label of the node that the box node
points to. Remark that for DGys the notion of eigenvariable and the notion of box-
variable coincides. We also recall from [2] the notion of a boz-topological ordering:
> is a box-topological ordering of G if it is a linear ordering of the nodes of G, such
that n —> m = n > m and if B has box node n and m € B, then n > m.

Lemma 2.5 A finite closed box directed graph G is a DGy if and only if the following
hold

(i) If u is a bozx-variable of a box B of G, it does not occur in a label of a node
outside B.

(ii) There is a boz-topological ordering > of G.

(iii) Ewvery node n of G is of one of the following siz types:
A It has no outgoing edges.

—-E It has label B and has ezxactly two outgoing edges: one to a node (m, A—B)
and one to a node (p, A), both within the scope of n.

—-l It is a box node of a box B with label A—B and has exactly one outgoing edge,
which is to a node (j, B) inside the box B (and not in any deeper bozes) with
no other ingoing edges. All nodes inside the box without outgoing edges have
label A.

R It has label A and has ezxactly one outgoing edge, which is to a node (m, A)
that is within the scope of n.
V-E It has label [t/x] for some formula ¢, some term t and some variable z, and
n has exactly one outgoing edge to a node (m,Vx.p) within the scope of n.

V-l It is a box node of a box B with label Yx.p for some wvariable x and some
formula o, and has exactly one outgoing edge, which is to a node (j, p[u/x])
inside the box B (and not in any deeper bozes). Node (j, plu/x]) has no other
ingoing edges and there are no nodes without outgoing edges in B.

Proof. =:By induction on the definition of deduction graph. <:By induction on
the number of nodes of G, distinguishing according to the type of (one of) the
maximal node (in the box-topological ordering) of G. O

3 Cut-elimination

We now also encounter a “detour” in a proof, when a V-introduction is immediately
followed by a V-elimination. Definition 3.3 describes the elimination of a safe V-cut.

Not all V-cuts are safe, so it might be necessary to apply some transformations
to make them safe. These transformations are the same ones as for —-cuts: repeat-
elimination, unsharing, and incorporation. The only difference with the transfor-
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mations on DGs is, that unsharing has become a little more involved, because of the
eigenvariable requirement.

Definition 3.1 A V-cut in a DGy G is a subgraph of G consisting of:

* a box node (n,Vz.p),

* anode (p, p[t/z]),

* a sequence of R-nodes (sg,Vx.p),..., (s, Vr.),

o wdges (p, ¢[t/z]) — (si,Vr.0) — ... —> (80, V.0) —> (n, V. 00).

We call the node (n,Vz.p) the major premiss and we call the node (p, p[t/x]) the

conclusion.

Similarly, in a —-cut, we call (n, A—B) the major premiss and the node (p, B)
the conclusion.

Definition 3.2 Let B be the box associated to box node n. A (V/—)-cut in a DGy
G is safe if the following requirements hold:

* there is an edge from the conclusion to the major premiss and that is the only
edge to the major premiss;

e the major premiss and the conclusion are at the same depth (relative to the box
structure);

Definition 3.3 The process of eliminating a safe V-cut is the following operation

on DGys (see Figure 4):

* change the labels 9 of the nodes in the box of n, to ¥[t/ul;

 remove the box and box node (n,Vx.o[x/ul);

e add an edge from (p, p[t/z]) to (j, ¢[t/u]) (the node that n pointed to).

;
\ ,
\ ,
\ , Blt/u]
\ ,
\ ,
\ ,
v Es 1 Es
\ ,
\ ,
\

. e (et /ul)
L b A

(n, Ya.plz/u])

(v, plz/ullt/x]) (v, plz/ullt/x])

Fig. 4. Schematic presentation of a safe V-cut elimination.
Lemma 3.4 If G is a DGy with safe V-cut ¢ and G’ is obtained from G by eliminating
c, then G’ is also a DGy.
Proof. By Lemma 2.5. a

We can generalise repeat-elimination, unsharing, and incorporation without
much ado. Because after unsharing we still want every eigenvariable to occur just
once, this step now includes the renaming of eigenvariables of copied boxes.
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Definition 3.5 Let G be a DGy with a cut with major premiss (n, ¢) and conclusion
(p,v). Suppose G contains a node (ng, ), an R-node (n1,¢) and edges n; —> ng
and p —> nj. The repeat-elimination at ng,n1,p is obtained by:

* When an edge points to ni, redirect it to ng;
e Remove n;.
Lemma 3.6 For G a DGy with a cut with major premiss (n,p) and conclusion

(p, ). Suppose G contains a node (ng, ), an R-node (n1,¢) and edges ng —> nyg
and p —> nq, the repeat-elimination of at ng,n1,p is also a DGy.

Proof. By Lemma 2.5. a

Definition 3.7 Let G be a DGy with a V-box B with eigenvariable u. Let v be a
fresh variable. Then the renaming of u by v is the graph G in which the labels 1
of the nodes of B have been replaced by ¥[v/u].

Lemma 3.8 Let G be a DGy with a V-box B with eigenvariable u. Let v be a fresh
variable. Then the renaming of u by v is a DGy.

Proof. By Lemma 2.5. O

Definition 3.9 Let G be a DGy with a cut ¢ with major premiss n. Suppose n is
a box node of a box B and has k > 2 ingoing edges, from p1,...,pr. Then the
unsharing of G at nodes n,p1,...py is obtained by:

e making a box B’ that contains a copy of all nodes and edges of B,

e copy all outgoing edges of B to B’ (thus if we had ¢ —> m with g € B, ¢ € B/
and m ¢ B, then we add ¢ —> m, where ¢’ is the copy of ¢ € B/,

e letting pa,...,px point to n’ (the box node of B') instead of n;
* renaming the eigenvariable of B’ and of all boxes contained in B'.
Lemma 3.10 Let G be a DGy with a cut ¢ with major premiss n. Suppose n is a box

node of a box B and has k > 2 ingoing edges, from p1,...,pr. Then the unsharing
of G at nodes n,p1,...py is a DGy.

Proof. By Lemma 2.5. a

Definition 3.11

We have a depth-conflict in the DGy G, if G contains a cut with major premiss n
and conclusion p at a greater depth, such that there is an arrow from p to n and
that is the only arrow to n. In that case the incorporation of G at n,p is obtained
by moving By, i.e. the box of n, into the box at the lowest depth that includes p
but excludes n.

Lemma 3.12 Suppose G is a DGy with a depth conflict. Then the incorporation at
the magjor premiss and the conclusion is a DGy.

Proof. By case analysis on the incorporating box. Then by Lemma 2.5. a

Definition 3.13 Given a DGy G with a cut ¢, the process of — /N-cut elimination
is the following;
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(i) (Repeat elimination) As long as there is no edge from the conclusion to the
major premiss, perform the appropriate repeat-elimination as described in Def-
inition 3.5;

(ii) (Unsharing) If there is an edge from the conclusion to the major premiss,
but this is not the only edge to the major premiss, perform an appropriate
unsharing step, as defined in Definition 3.9;

(iii) (Incorporation) As long as the conclusion is at a greater depth than the major
premiss, perform the appropriate incorporation step, as described in Definition
3.11.

(iv) (Eliminating a safe cut) If ¢ is safe, perform either the safe —-cut-elimination
step, or the safe V-cut-elimination step, as defined in Definition 3.3.

8.1 Discussion

We have made some choices in the definition of DGys that facilitate the process of
cut-elimination. Except for the choice of the language, which has already been
discussed in the Introduction, these are:

(i) We deviate from the side-condition for the V-introduction rule as normally used
in Fitch-style flag deduction, as discussed in the Introduction.

(ii) We require the uniqueness of the eigenvariables.

Suppose we would adopt the Fitch-style side-condition for the V-introduction
rule, then this results in having to do an additional renaming in the incorporation
step in some cases.

If we would abandon the requirement of unique eigenvariables and adopt the
Fitch-style side-condition, this would move renaming from the unsharing step to
the incorporation step.

4 Strong Normalisation

To obtain strong normalisation for cut-elimination on DGys, we extend the A-calculus
with tupling as defined in [2], and prove strong normalisation for it. Then a reduc-
tion preserving translation from DGys to this calculus is defined.

The strong normalisation result we thus get is relatively weak: It is assumed
that first one cut is made safe and is eliminated, before handling another cut.

For Gentzen-Prawitz natural deduction, strong normalisation for cut-elimination
can be proven by (1) defining a —-cut preserving translation to the —-fragment and
(2) showing that an infinite V-cut reduction is impossible. That might also work for
the DGy case, but (2) is now problematic, because a V-cut contraction may involve
unsharing and then other V-cuts may be copied. We therefore opt for a direct proof
of strong normalisation for cut-elimination for DGys.

Definition 4.1 The typed expressions T and types of the A—()-calculus for first
order predicate logic with universal quantification are defined as follows.

(i) For ¢ € Form, all variables x¥ are of type .
(ii) If T is of type p—1 and S is of type ¢, (T'S) is of type 9.
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(iii) If T is of type @, then Az¥.T is of type 1h—.
(iv)
(v)
vl 1,...,1y are of types 1, ... @, respectively,
i) If T T, f ® © ivel
(Ty,...,T,) is an expression of type ;.

If T is of type Vz.p and ¢ is a term, then (Tt) is of type ¢[t/x].
If T is of type ¢, then Ay.T'[u := y] is of type Vy.oly/ul.

Definition 4.2 The reduction rules for the expressions are as follows:
(A2 M)N —>5 (M, N) if x ¢ FV(M)
(A2”.M)N —>5 Mz := N] if x € FV(M)
(A\y.M)t —5 M|y = t]
(M, Py,...,Pe)N —>5(MN, Py,...,FP)
(M, Py,..., Pyt —>ﬁ (Mt, Py, ..., Py)
N{M, Pr,...,Py) —>5(NM,P,...P)
(coos (M, Pryoy Pi)y o) =5 (00, M P Py )
As can be observed from the typing and the reduction rules, the Ny,..., Ny in
(M, Ny,...,Ng) act as a kind of ‘garbage’. The order of the terms in Ny,..., Ny

is irrelevant and we therefore consider terms modulo permutation of these vectors,
which we will write as =,.

Definition 4.3 Given a deduction graph G and a node n in G, we define the A-term
(G, n) as follows (by induction on the number of nodes of G).

A If (n, A) has no outgoing edges, (G,n) := 22,

—E If (n, B) — (m,A—B), and (n, B) — (p, A), define (G, n)) := (G, m] (G, p).
R If (n, A) —> (m, A), define (G, n) := (G, m)

—l| If (n, A—B) is a box node with (n, A—B) —> (j, B), the free nodes of the

box are nq,...,n; and the nodes without incoming edges inside the box are
mi,...,mp, then

(G, n) = Xz (G, 4], (G, mi), ..., (G, mp))n, ==x,...,zp, =]

VE If (n, ¢[t/y]) — (p,Vy.¢), define (G, n) := (G, p)t.
v

If (n,Yy.ply/u]) —> (j,) and the nodes without incoming edges are
mi,...,mp, then

QG,HD = )‘y'<<[Gaj]>7 <[Ga m1]>7 K <[Ga mpD)[u = y]

The interpretation of the deduction graph G, (G)), is defined as ((G,r1),
(G,7)), where ri,...,r; are the top-level nodes without incoming edges in the
deduction graph G.

Definition 4.4 A \—() context is given by the following abstract syntax K|[—].
K[=] =[] [ ToK[=] [ K[=]Ty
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So a A—() context is a A—()-term consisting only of applications (no abstrac-
tions) with one open place. The following is immediate by induction on K[—]|.

Lemma 4.5 For all \—() contexts K[—] and A—()-terms M, Nq,..., N

K[(M,Ny,...,Ny)] %/@(K[M],Nl,...,Nk).

Lemma 4.6 (V Cut-elimination is S-reduction in A—())
If G’ is obtained from G by a V-cut-elimination, then (G]) %E({G’]}.

Proof. By induction on the structure of G. O
Theorem 4.7 The process of cut-elimination is terminating for DGys.

Proof. Suppose it is not terminating. Then by Lemma 4.6, we have an infinite
reduction in A—(), but A—() is strongly normalising (see [2]). 0

5 Connection with Proof Nets

In [3] we have seen a correspondence between a variant of DGs and proof nets of
MELL. We remarked that there are some superficial similarities between the two:
both have boxes and both enable sharing (contraction). Using this, we were able
to define a translation from these deduction graphs to proof nets that preserves
reduction.

In the way they handle quantification proof nets also seem fairly close to de-
duction graphs. In the early days [4] boxes were used to delimit the scope of a
quantification. Later (see for example [8]), this was put aside and replaced by
global correctness criteria. It seems plausible that in deduction graphs too we could
omit boxes for this use. We have not done this as deduction graphs serve another
purpose than proof nets, and leaving out the V-boxes would make the deduction
graphs less perspicuous. This discrepancy in the handling of quantification does
not seem to jeopardise the aim to extend the translation given in [3]: Because
(Vz.@)* =!(Vz.¢*) (where ()* is Girard’s translation), it is the exponential box that
should act like the V-boxes in deduction graphs anyway.

The main difficulty in both proof nets and deduction graphs is that during cut-
elimination it is in some cases necessary to do a renaming. In anticipation to this,
we have changed the V-introduction rule for deduction graphs and we have used two
kinds of variables: one kind for bound uses, and one for free uses (see also [7]).

In [5], Girard discusses proof nets of MLL with quantifiers. Note that, as these
proof nets do not include the exponential rules, this results in a simpler system.
His approach is similar to ours. He replaces some free variables by constants, which
reminds of our solution with two kinds of variables. He also insists on uniqueness
of the eigenvariable. About renaming he says:

In practice, it would be crazy to rename bound variables (. ..).

Luckily, as there is no copying going on in the cut-elimination of MLL, renaming is
nowhere necessary.

This changes when we shift our attention to MELL proof nets with quantifica-
tion. The most complete study of this can be found in [8], and although it handles
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only second order quantification explicitly, it is generally assumed [4] [8], that first
order quantifiers do not provide additional difficulties.

Here another approach has been taken. Instead of discriminating between dif-
ferent kinds of variables, an equivalence relation on the formulas is defined, making
two formulas the same when one can be obtained from the other by renaming bound
variables. Deviating from [8], this line might be pursued as follows: 3

(i) Define formulas;
(ii) Define proof-structures;
(iii) Define the equivalence relation on formulas;

(iv) Extend the equivalence relation on proof-structures.

Once this has been done, it needs to be shown that after cut-elimination on a
proof-net, one gets a proof-structure that is equivalent to a proof net.

This plan has two difficulties, the first being the exact definition of equivalence
relation on proof structures. Just saying that two proof structures are equivalent,
when they have the same structure and when formulas at the same places are
equivalent, would not suffice. In addition, it should also consider renaming of free
variables in formulas that will get bound somewhere else in the structure.

Secondly, it could be rather complicated to find an equivalent proof-net after cut-
elimination. This problem is very similar to the ones discussed in the Introduction.
It is not at all clear how this renaming can be done for example after c-b-reduction
(copying a box).

Another way out would be to extend the idea used in [5], similarly to deduction
graphs: Change the V-rule and work with two kinds of variables. This might very
well work.

Whence proof nets with quantifiers are defined properly and completely, it seems
likely that we can define a reduction-preserving translation from DGys to them.
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Abstract

In this paper, we study the algebraic structure of directed bigraphs, a bigraphical model of computations
with locations, connections and resources previously introduced by the authors as a unifying generalization
of other variants of bigraphs. We give a sound and complete axiomatization of the (pre)category of directed
bigraphs. Moreover, we use this axiomatization for encoding the A-calculus, both in call-by-name and
call-by-value variants, showing in this way the expressive power of directed bigraphs.

Keywords: Bigraphical models, categorical meta-models for Concurrency, A-calculus.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical meta-model of com-
putation introduced by Milner [7,8] in which both locality and connectivity are
central notions. The key structure of BRSs are bigraphs, which are composed by
two orthogonal graph structures: a hierarchical place graph describing locations,
and a link (hyper-)graph describing connections. The reaction rules, representing
the dynamics of the BRS, may change both these structures. Several process cal-
culi for Concurrency can be represented in bigraphs, such as CCS, Ambients, and
(using a mild generalization called binding bigraphs), also the m-calculus and the
A-calculus. An important feature of bigraphs is that they support a very general
construction, based on the notion of relative pushout (RPO) [5], which allows to
turn reaction rules into labelled transition systems.

However, Milner’s definition of bigraphs is not the only possible one. Sassone
and Sobociriski have given in [11] an alternative definition, derived from a general
categorical construction, the “input-linear cospan” over a particular 2-category of
place-link graphs. Also this variant enjoys a general construction of RPOs. Inter-
estingly, Milner’s and Sassone-Sobocinski’s variants do not coincide; in fact, these
two categories and their respective RPO constructions do not generalize each other.
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In previous work [4,3], we have presented directed bigraphs, a generalization of
both these kinds of bigraphs. Intuitively, the idea of directed bigraphs is to notice
that names are not resources on their own, but only a way for denoting (abstract)
resources (i.e., edges). A system can “ask” for external resources thorugh the names
on its interfaces. Thus, we can identify a “resource request flow” starting from
control ports, going through names and terminating in edges. This information
is represented in the new notion of directed link graph, which replaces the previous
notion of link graphs. We have given RPO constructions for this model, generalizing
and unifying the constructions independently given by Jensen-Milner and Sassone-
Sobocinski in their respective variants. Moreover, the very same construction can
be used for calculating relative pullbacks as well.

In this paper, we continue this line of investigation. We study the algebraic
structure of directed bigraphs, giving a sound and complete axiomatization of this
(pre)category. Moreover, we use this axiomatization for encoding the A-calculus,
both in call-by-name and call-by-value variants. Notably, we do not need to in-
troduce further extensions (such as binding signatures) to this end; thus, directed
bigraphs turn out to be more expressive than the two variants previously proposed.

Synopsis In Section 2 we briefly recall the main definitions about the precategory
'DBIG of directed bigraphs, and the category DBIG of abstract directed bigraphs. In
Section 3 we analyze the algebraic structure of the precategory 'DBIG; this analysis
is then carried on to the category DBIG in Section 4. In Section 5 we put directed
bigraphs at work, giving the encodings of A-calculus. Conclusions are in Section 6.

2 Directed bigraphs

In this section we recall the definition and some properties of directed bigraphs; for
details, we refer to [4,3]. Following Milner’s approach, we work in precategories; see
[6, §3] for an introduction to the theory of supported monoidal precategories.

Let I be a given signature of controls, and ar : K — w the arity function.

Definition 2.1 A polarized interface X is a pair of disjoint sets of names X =
(X, X™T); the two components are called downward and upward faces, respectively.

A directed link graph A : X — Y is A = (V, E,ctrl,link) where X and Y
are the inner and outer interfaces, V is the set of nodes, E s the set of edges,
ctrl : V. — K is the control map, and link : Pnt(A) — Lnk(A) is the link map,
where the ports, the points and the links of A are defined as follows:

Pre(A)2> ar(ctri(v)) Pnt(A) £ XT oY wPrt(4) Lok(A)£X wYtwE
veV

The link map cannot connect downward and upward names of the same interface,
i.e., the following condition must hold: (link(XT)NX ") U (link(Y")NY ™) =0.

Directed link graphs are graphically depicted much like ordinary link graphs,
with the difference that edges are explicit objects and points and names are asso-
ciated to edges (or other names) by (simple) directed arcs. This notation makes

3 We prefer precategories to 2-categories, because their concreteness allows for more direct definitions.
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explicit the “resource request flow”: ports and names in the interfaces can be asso-
ciated either to locally defined resources (i.e., a local edge) or to resources available
from outside the system (i.e., via an outward name).

Definition 2.2 ('DLG) The precategory of directed link graphs has polarized in-
terfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs A; = (Vi, E;, ctrl, link;) : X; — X1 (1 =0,1),
the composition Ao Ay : Xo — Xo is defined when the two link graphs have disjoint
nodes and edges. In this case, A; o Ag = (V, E,ctrl,link), where V. 2 Vo u Vi,
ctrl & ctrlgWetrly, E 2 EyWE, and link : XJ WXy WP — EWX, L+JX;' is defined
as follows (where P = Prt(Ap) W Prt(Ay)):

linko(p) if p € X WPrt(Ag) and linky(p) € Eo W X
link(p) & linky(z) if p € X WPrt(Ag) and linky(p) =z € X;
linki(p) ifp € X5 WPrt(Ay) and link:(p) € By W X
nko(z) (A1) ()

if pe Xy WPrt(Ar) and link,(p) =z € X .

The identity link graph of X is idx = (0,0,0x, [dx-wx+) : X — X.
Definition 2.3 The support of A = (V, E, ctrl,link) is the set |[A| 2V @ E.

Definition 2.4 (idle, lean, open, closed, peer) Let A: X — Y be a link graph.

A link | € Lnk(A) is idle if it is not in the image of the link map (i.e., | &
link(Pnt(A))). The link graph A is lean if there are no idle links.

A link 1 is open if it is an inner downward name or an outer upward name (i.e.,
€ X~ UYT); it is closed if it is an edge.

A point p is open if link(p) is an open link; otherwise it is closed. Two points
p1,p2 are peer if they are mapped to the same link, that is link(p1) = link(pa).

Proposition 2.5 A link graph A : X — 'Y s epi iff there are no peer names in'Y ~
and no idle names in Y. Dually, A is mono iff there are no idle names in X~
and no peer names in X+,

A is an isomorphism iff it has no nodes, no edges, and its link map can be
decomposed in two bijections link™ : X+ — YT, link™ : Y~ — X .

Definition 2.6 The tensor product ® in 'DLG is defined as follows. Given two
objects X, Y, if these are pairwise disjoint then X @ Y 2 (X~ wY ", Xt wYy™).
Given two link graphs A; = (Vi, E;, ctri;, link;) : X; — Y; (i = 0,1), if the tensor
products of the interfaces are defined and the sets of nodes and edges are pairwise
disjoint then the tensor product Ag® A : Xo® X1 — Yo®Y is defined as Ag@ A1 =
(‘/0 WV, By W Eq, ctrig W ctriy, linkg W lznk:l)

Finally, we can define the directed bigraphs as the composition of standard place
graphs (see [6, §7] for definitions) and directed link graphs.

Definition 2.7 A (bigraphical) interface I is composed by a width (a finite ordinal,
denoted by width(I)) and by a polarized interface of link graphs (i.e., a pair of finite
sets of names). A directed bigraph with signature K is G = (V, E, ctrl, prnt, link) :
I — J, where I = (m,X) and J = (n,Y) are its inner and outer interfaces respec-
tively; V' and E are the sets of nodes and edges respectively, and prnt, ctrl and link
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are the parent, control and link maps, such that GF £ (Vyetrl,prnt) : m — n is a

place graph and G* £ (V, E, ctrl,link) : X — Y is a directed link graph.

We denote G as combination of G and G* by G = (G¥,GF). In this notation,
a place graph and a (directed) link graph can be put together iff they have the same
sets of nodes and edges.

Definition 2.8 ('DBIG) The precategory 'DBIG of directed bigraph with signature
K has interfaces I = (m, X) as objects and directed bigraphs G = (GF,GF) : T — J
as morphisms. If H : J — K is another directed bigraph with sets of nodes and edges
disjoint from V and E respectively, then their composition is defined by composing
their components, i.e.: Ho G2 (HP oGP Hl o G : T — K.

The identity directed bigraph of I = (m, X) is (idp, [dx—yx+): 1 — I.

Proposition 2.9 A directed bigraph G in 'DBIG is epi (respectively mono) iff its
two components G*' and G are epi (respectively mono).

P L
)

The isomorphisms in '"DBIG are all the combinations ¢ = of an isomor-

phism in '"PLG and an isomorphism in 'DLG.

Definition 2.10 The tensor product ® in 'DBIG is defined as follows. Given
I=(mX) and J = (nY), where X and Y are pairwise disjoint, then (m,X) ®
n,YyE (m+n, (X" WY, XtwY™)).

The tensor product of G; : I; — J; is defined as Go@ G £ <G0P®Gf, G(]}@Gf) :
Iy® I — Jy ® J1, when the tensor products of the interfaces are defined and the
sets of nodes and edges are pairwise disjoint.

Remarkably, directed link graphs (and bigraphs) have relative pushouts (RPOs)
and pullbacks (RPBs), which can be obtained by a general construction, subsuming
both Milner’s and Sassone-Sobocinski’s variants. We refer the reader to [4,3].

Actually, in many situations we do not want to distinguish bigraphs differing
only on the identity of nodes and edges. To this end, we introduce the category
DBIG of abstract directed bigraphs. The category DBIG is constructed from 'DBIG
forgetting the identity of nodes and edges and any idle edge. More precisely, abstract
bigraphs are concrete bigraphs taken up-to an equivalence < (see [6] for details).

Definition 2.11 (abstract directed bigraphs) Two concrete directed bigraphs
G and H are lean-support equivalent, written G < H, if they are support equivalent
after removing any idle edges.

The category DBIG of abstract directed bigraphs has the same objects as 'DBIG,
and its arrows are lean-support equivalence classes of directed bigraphs. We denote
by A:'DBIG — DBIG the associated quotient functor.

We remark that DBIG is a category (and not only a precategory); moreover, A
enjoys several important properties which we omit here due to lack of space; see [6].

3 Algebraic structure of 'DBIG

We begin this section introducing some useful notations.

Remark 3.1 An interface (0,(X~,X7T)) is abbreviated as (X, X1); a singleton
set {z} as z; and (m,(0,0)) as m. The interfaces (0,0) and 0 denote the same
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interface, the origin €. Hence the identity ide can be expressed as e, (0,0) or 0.

A bigraph A : (0, XT) — (0,Y™") is defined by a (not necessarily surjective)
function o : XT — YT, called substitution, if it has no nodes and no edges and
the link map is o; analogously a bigraph A : (X—,0) — (Y ~,0) is defined by a (not
necessarily surjective) function § : Y~ — X~ called fusion, if it has no nodes and
no edges and the link map is §. With abuse of notation, we write ¢ and d to mean
their corresponding bigraphs.

Let Z,§ be two vectors of the same length; we write (yo/xo,y1/x1,...) or Ag,
where all the z; are distinct, for the surjective map x; — y;; similarly, we write
(yo/xo,y1/%1,-..) or VL, where all y; are distinct, for the surjective map y; — ;.

We denote by AN : (0,0) — (0, X) the bigraph defined by the empty substitution
o:0 — X, in the same way we denote Vx : (X,0) — (0,0) for the bigraph defined
by the empty fusion d : ) — X.

Note that each substitution o can be expressed in a unique way as o =T Q@ AX,
where T is a surjective substitution; while each fusion 0 can be expressed in a unique
way as d = ( ® Vx, where ( is a surjective fusion. We denote the renamings by «,
i.e. the bijective substitution or bijective fusion.

Finally, we introduce the closure bigraphs. The closure Iy : 0,y) — (z,0) has
no nodes, a unique edge e and the link map is link(x) = e = link(y). Two other
types of closures are obtained by composing the closure Y and A™ or V, respectively:

* the up-closure AY : (0,y) — (0,0) has no nodes, one edge e and link(y) = e;

* the down-closure ¥, : ((,0) — (z,0) has no nodes, one edge e and link(z) = e.

Definition 3.2 (wirings) A wiring is a bigraph whose interfaces have zero width
(and hence has no nodes). The wirings w are generated by the composition or tensor
product of three base elements: the substitutions o : (0, X 1) — (0,Y™); the fusions
6:(Y™,0) — (X7,0); and the closures I : (0,y) — (z,0).

Definition 3.3 (prime bigraph) An interface is prime if it has width equal to 1.
Often we abbreviate a prime interface (1, (X, X)) with (X, X)), in particular
(0,0)) = 1. A prime bigraph P : (m,(Y—,0)) — (0, X)) has no upward inner
names and no downward outer names, and has a prime outer interface.

An important prime bigraph is merge,, : m — 1, it has no nodes and it maps m
sites to an unique root. A bigraph G : n — (m, (X, X)) without inner names, it
can be simply converted in a prime bigraph as follows: (merge,, ® id(x- x+)) o G.

Definition 3.4 (discrete bigraph) A bigraph D is discrete if it has no edges and
the link map is a bijection. That means all points are open, no pair of points is a
peer and no link is idle.

The discreteness is well-behaved, and preserved by composition and tensor products.
It is easy to see that discrete bigraphs form a monoidal sub-precategory of 'DBIG.

Definition 3.5 (ion, atom and molecule) For any non atomic control K with
arity k and a pair of sequence T~ and T+ of distinct names, whose overall length
is k, we define the discrete ion K(v)ij_r :{(Z7,0)) — ((0,Z1)) as the bigraph with
a unique K -node v, whose ports are separately linked to T~ or to ¥+. We omit v
when it can be understood.
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For a prime discrete bigraph P with outer names (Y ~,Y ™) the composite (ng ®
idy- Y+)) o P is a discrete molecule. If K is atomic, we define the discrete atom

KT (&,0) — ((0,2F)); it resembles an ion, but has no site.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition
of w®idy with a discrete one. Often we omit - - -®id; in the compositions, when there
is no ambiguity; for example we write merge,, oG to mean (mergem®id(X7,X+)) oG
and Kgf oP to mean (ng ®idy - y+))oP. Note that every atom and every molecule
are prime, furthermore an atom is also ground, but a molecule is not necessarily
ground, since it may have sites.

Now, we define some variants of the tensor product, whose can allow the sharing
of names. Process calculi often have a parallel product P | @, that allows the
processes P and @) to share names. In directed bigraphs, this sharing can involve
inner downward names and/or outer upword names, as described by the following
definitions.

Definition 3.6 (sharing products) The outer sharing product, inner sharing
product and sharing product of two link graphs A; : X; — Y; (i = 0,1) are de-
fined as follows:

(X*,X*) AV YY) 2 (X~ wYy , Xtuy™)
DY ,YHE (X UY , XTwY™)
VoW Vi, Eg W Eq, ctrlg W ctrly, linky W link:l) Xo® X1 — Yo A
Vow Vi, Eg W Eq, ctrig W ctrly, linkg W lZ’I’L]Cl) XoY X1 — Yo
Vow Vi, Eg W EY, ctrlg W ctrly, linky W l’ink‘l) XoYXi = Y9\

N

o

<

b

_
> e [ <
~ A~

defined when their interfaces are defined and A; have disjoint node and edge sets.

The outer sharing product, inner sharing product and sharing product of two
bigraphs G; : I; — J; are defined by extending the corresponding products on their
link graphs with the tensor product on widths and place graphs:

m, X) A(n,Y)= (n+m, X \Y) (m, X)Y (n,Y) = (n+m, XYY)

(n,
Go NG 2 (GF oGy GE \GHY T Iy — Jy A Iy
GoYGL 2 (GYoGt GEkyahy 1oy — Jhyo )y
Go | G1 £ (Gf @G, Gy || GT) : oY Iy — Jo A 1.

defined when their interfaces are defined and G; have disjoint node and edge sets.

It is simple to verify that A, Y and || are associative, with unit e.

Another way of constructing a sharing product of two bigraphs Ggp,G1 is to
disjoin the names of Gg and G, then take the tensor product of the two bigraphs
and finally merge the name again:

Proposition 3.7 Let Gy and G1 be bigraphs with disjoint node and edge sets. Then

GOAGI = U(G0®7'G1C) GOYGl = (G0®7'G1<)(5 Go H Gl = O’(G0®TG1C)(5
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where the substitution o and T are defined in the following way: if z; (i € n) are
the upward outer names shared by Gy and G1, and w; are fresh names in bijection
with the z;, then 7(z;) = w; and o(w;) = o(z;) = z; (i € n). The substitution § and
¢ are defined in a very similar way, but acting on the downward inner names.

Definition 3.8 (prime products) The prime outer sharing product and prime
sharing product of two bigraphs G; : I; — J; are defined as follows:

(m, (X7, X)) A (n, (V7Y T) (X" WY, XTUYT))

Go X G1 £ merge widen(jo)+width()) © (Go A G1) : Io @ It — Jo A J1
Go | G1 & mergequidmn(Jo)rwidin(i) © (Go || G1) = To Y Iy — Jo X Ji.

defined when their interfaces are defined and G; have disjoint node and edge sets.

It is easy to show that A and | are associative, with unit 1 when applied to prime
bigraphs. Note that for a wiring w and a prime bigraph P, we have w A P =w A\ P
and w | P = w || P, because in this case these products have the same meaning.

Now, we can describe discrete bigraphs, which are the complement of wirings:
Theorem 3.9 (discrete normal form) (i) Every bigraph G can be expressed
uniquely (up to iso) as: G = (w ® id,) o D o (W ® idy,), where D is a dis-
crete bigraph and w, W' are two wirings satisfying the following conditions:
e in w, if two outer downward names are peer, then their target is an edge;
e inw there are no edges, and no two inner upward names are peer (i.e., on in-
ner upward names w' is a renaming, but outer downward names can be peer).

(i) Ewvery discrete bigraph D : (m, (X, X7")) — (n,(Y~,Y ™)) may be factored

uniquely (up to iso) on the domain of each factor D;, as:

D=a®(Dy®: @ Dny)o(r®idy,, 5))

with o a renaming, each D; prime and discrete, and ™ a permutation.
Proof. For the first part, consider a bigraph G : (n, (X, X)) — (m, (Y, Y™1)).
We divide G in three parts: a discrete D : (n,(Z~,Z7)) — (m,(W~,WT)) and
two wirings w : (W~ , W) - (Y7, YY) and ' : (X, X1) — (Z7,Z7") satisfying
the previous conditions. We proceed by cases:

p € P, linkg(p) = e € E: we add a fresh name w, € W and define linkp(p) = w,
and link, (we) = e;

p € P, linkg(p) =y € Y: we add a fresh name w, € W7 and define linkp(p) =
wy and link,(wy) = y;

p € P, linkg(p) = © € X this case is analogous to the previous one;
y €Y, linkg(y) = e € E: we define link, (y) = e;

x € X1, linkg(y) = e € E: we add a fresh name 2z, € ZT, a fresh name w, € W+
and define link, () = ze, linkp(ze) = we, link,(we) = €;

ye Y, linkg(y) =z € X : we add a fresh name w, € W™, a fresh name z, € Z~
and define link,,(y) = wy, linkp(w;) = z, and link,/(z;) = z;

x € X1, linkg(x) =y € YT: this case is analogous to the previous one; it is suffi-
cient to invert the direction of links and swap the rule of w with «’'.
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Note that there are no idle names in Z—, ZT, W~ and W, so those sets are formed
only by the fresh names defined in this proof. Furthermore, the three conditions
above holds because we create a fresh name every time we need one.

The proof of the second part is easy. Since the outer interface of D has width
n, we can decompose D in n discrete and prime parts, obtaining Dy ® --- ® D, 1.
The renaming « describe the connections between the inner interface and the outer
one. Finally the permutation 7 gives the right sequence of the sites, so we can take
the tensor product of D; (i =0,....n — 1) in any order. O

We call this unique factorization discrete normal form (DNF). The DNF ap-
plies to abstract bigraphs as well, and indeed it will play an important part in the
complete axiomatization of DBIG, as we will discuss in the next section.

Note that a renaming is discrete but not prime (since it has zero width); this is
why the factorization in Theorem 3.9(ii) has such a factor. This unique factorization
depends on the fact that the prime bigraphs have no upward inner names and
downward outer names. In the special case that D is ground, the factorization in
Theorem 3.9(ii) is simply D = dy ® --- ® d,,—1, that is a product of discrete and
prime ground bigraphs.

4 Algebraic structure of DBIG

In this section we describe a sound and complete axiomatization for directed ab-
stract bigraphs. Furthermore we give a normal form for discrete bigraphs, that is
useful to prove the completeness of the axiomatization.

First we introduce the algebraic signature, that is a set of elementary bigraphs
able to define any other bigraph (Figure 1).

We have to show that all bigraphs can be constructed from these elementary
ones by composition and tensor product. Before giving a formal result, we provide
an intutive explanation of the meaning of these elementary bigraphs.

e The first three bigraphs build up all wirings, i.e. all the link graphs having no
nodes. Indeed, all substitutions (fusions, resp.) can be obtained as tensor products
of elementary substitutions A% (fusions VY resp.); the tensor products of single-
ton substitutions AY and/or singleton fusions Vy give all renamings. The compo-
sition and the tensor product of substitutions, fusions and closures give all wirings.

* The next three bigraphs define all placings, i.e. all place graphs having no nodes;
for example merge,, : m — 1, merging m sites in a unique root, are defined as:

mergey = 1 mergem.1 = merge o (idy ® merge,,).
Notice that merge; = id and merges = merge, and that all permutations

™ :m — m are constructed by composition and tensor from the v, ;.

* Finally, for expressing any direct bigraph we need to add only the discrete ions
K ;Ef . In particular, we can express any discrete atoms as K ;E'j ol.

The following proposition shows that every bigraph can be expressed in a normal
form, called (again) discrete normal form (DNF). We will use D, @ and N to denote
primes, discrete prime bigraphs, and the discrete molecules respectively.
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% 1;:(0,y) — (z,0) closure

Y

y
//\ A% (0,X) — (0,y) substitution
P,

\\/ vYi(z,0) — (Y,0) fusion

B lie — 1 a barren root

merge:2 — 1 mapping 2 sites in 1 root
' YmniM+ N —n+m swapping m with n

T1T2- - T

':-6' Ky‘?:<(g7 0)) — ((0,%)) a discrete ion

J1Y2- - - YUn

Fig. 1. Elementary Bigraphs

Proposition 4.1 (discrete normal form) In DBIG every bigraph G, discrete D,
discrete and prime Q and discrete molecule N can be described by an expression of
the respective following form:

G = (w®idy,)o Do (W ®idp) (1)
where w,w’ satisfy the conditions given in Theorem 3.9(i);
D:a®((Q0®---®Qn,1)0(7r®iddom(@))) (2)
Q = (mergenyp ®idyy+) o (idy @ Ng® -+ ® Np_1) o (7 @ id(y - py) (3)
N = (KZ @idgy+)oQ. (4)

Furthermore, the expression is unique up to isomorphisms on the parts.
Proof. The proof is quite similar to the proof of Theorem 3.9. a

We can use these equations for normalizing any bigraph G as follows; first, we
apply equations (1), (2) to G once, obtaining an expression containing discrete
and prime bigraphs Qq,...,Qn—1. These are decomposed further using equations
(3), (4) repeatedly: each @; is decomposed into an expression containing molecules
Nio, ..., Nip,—1, each of which is decomposed in turn into an ion containing another
discrete and prime bigraph Q;,j. The last two steps are repeated recursively until
the ions are atoms. Note that the unit 1 is a special case of Q) when n =p = 0.

In Figure 2 we give a set of axioms which we prove to be sound and complete.

Each of these equations holds only when both sides are defined; in particular,
recall that the tensor product of two bigraphs is defined only if the name sets are
disjoint. It is important to notice also that for ions only the renaming axiom is
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Categorical Axioms
Aoid=A=1ido A Ao(Bo(C)=(AoB)oC
ARid.=A=1id. ® A A (BoC)=(A®B)®C
Ve=1tdr  Yyr071,g =idrgy
(A1 ® By) o (Ag® By) = (A1 0 Ag) ® (By 0 Bp)
Y ko(A®B)=(B®A)oyu,y (where A:H —I,B:J — K)
Yiesk = (Y, ®idy) o (idr ® Vi)

Link Axioms
Looi=1 Viely=1, Veoljon!=ide

Dy © (idpy) @ %) = Ay (idyg) ® Vy ) o v(Vey) = g(Xey)
Place Axioms
merge o (1 ®idy) = idy merge oy1,1 = merge
merge o (merge ® idy) = merge o (id; ® merge)
Node Axioms
(id1 ® @) o KE = K2 KZ' o (idy @ a) = KTy

Fig. 2. Axiomatization for the abstract directed bigraphs.

needed (because the names are treated positionally).

Theorem 4.2 (Completeness of the axiomatization) Let us consider two ex-
pressions Ey, By constructed from the elementary bigraphs by composition and ten-
sor product. Then, Ey and E1 denote the same bigraph in DBIG if and only if the
equation Ey = Ey can be proved by the axioms in Figure 2.

Proof. The proof is similar to that of [6, Theorem 10.2]. The “if” direction is
simple to prove, since it requires to check that each axiom is valid. The “only if”
direction is in two steps. First, we prove by induction on the structure of expressions,
that the equality between an expression and its DNF is derivable from the axioms.
Next, since DNF's are taken up to iso, we have to show that the equality between
isomorphic DNFs is provable from the axioms. This is proved by showing that the
axioms can prove the isomorphisms of the components of a DNF, which are ions,
discrete and prime bigraphs, and discrete bigraphs. O

5 Application: the \-calculus

In this section we describe an encoding of both the call-by-name and the call-by-
value A-calculus. Recall that the set A of A-terms are the terms up-to a-equivalence
generated by the following grammar:

M,N =z | Xx.M | MN.

A walue is either a A-abstraction or a variable; values are ranged over by V.
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xr X
A J app D
x x Yy
vary lamy app Subg,y defr

Fig. 3. The signature for the A-calculus.
The call-by-name reduction semantics is defined by the following rules

M- M N — N’
MN — M'N MN — MN'

(Ax.M)N — M[N/z] (83)

while the call-by-value reduction semantics is defined by the following rules

M — M’ N — N’

Az M)V — M[V/z] (By) MN — M'N  MN — MN'

In Figure 3 we give a signature for representing the A-calculus “with single
substitutions”, that is where a substitution is performed once for each variable
occurrence. This signature resembles Milner’s encoding using binding bigraphs, but
in directed bigraphs we do not need to introduce further binding structures.

We can define a translator operator [-] : A — DBIG as follows:

[z] = var.  [Ax.M] = lamg o (IM] A A%)  [MN] = appo ([M] A[NT)

Intuitively, a A-term M is represented by a ground bigraph [M] : e — (0, X 1))
whose place hierarchy reflects the syntactic tree of M and the outer upwards names
X T are the free variables of M. Each A-expression is represented by a control and
a local resource which is bound to a upward name in the inner interface.

Proposition 5.1 Let M, N be two A-terms; then, M =, N iff [M] = [N].

Let us now see how we can represent the two semantics of the A-calculus. For
the call-by-name semantics, we define the controls lam and def as passive, sub and
app as active. The reaction rules are given in Figure 4.

For the call-by-value A-calculus, we have to replace the App.y, rule with two
rules Appcpy-var and Appepy-iam (Figure 5) corresponding to the two cases of values
where the application can be performed.

For both variants, we can prove the following result:
Proposition 5.2 Let M, M’ be two \-terms.
(i) If M — M’ then [M] —* [M'];
(i) If [M] —* [M'] then M —* M’.
Proof. By induction on the lenght of traces.

(i) The application of 3 (or 3,) is encoded by applying Appp, (or one of App py-var
and Appcpy-iam) o1 the correct sub-bigraph, i.e. the one which encodes the right
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Appcbn

SUbdispose

subg,y o (td1 \ AT A\ defy) — idi

€T x
& ~|&E
8- @ +®

Xz o (vary A\ defy) — Xi o (id1 A defy)

Subyar

Fig. 4. Reactions for the call-by-name A-calculus.

z z

s
_> var

A
( Appcbw—um‘
Py var sub
x

xT

app o (lamgz A\ var.) — subg,y o (id1 A\ (defy ovar:))

App cbv-lam

app o (lamg A\ lam;) — subg y o (id1 A (defy o lam;))

Fig. 5. Reactions for the call-by-value A-calculus.
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side of the rule. Next we use Sub,,- for every occurrence of x in M, finally we
apply Subgispose to eliminate the unnecessary controls sub and def.

(ii) First of all note that, by definition of [-], [M'] has no sub or def controls. If
[M] —* [M'], in the trace there are one or more application of App.p, (or
App cbv-var and APPcepy-iam), S0 we use the § (or (3,) rule on the corresponding
A-subterm. We can ignore the Sub,,, and Subgspose Tules because the substi-
tutions in A-calculus are performed instantaneously. a

6 Conclusions

In this paper we have given a sound and complete axiomatization of the precategory
of directed bigraphs, a bigraphical model which subsumes and generalizes both Mil-
ner’s and Sassone-Sobocinski variants. We have used this axiomatization for encod-
ing the A-calculus, both in call-by-name and call-by-value variants. It is interesting
to notice that no further extensions (such as binding signatures) are needed.

We plan to use this axiomatization for representing other calculi, in particular
calculi with resources, locations, etc., which can be represented by edges. Interest-
ing candidates could be the Fusion calculus [9] and the v-calculus [10]; it will be
interesting to see which kind of wide transition systems we would obtain.

The new discrete normal form, and associated composition operations, presented
in this paper can be useful in view of possible applications and extensions of logics
and matching tools for bigraphs, in the line of [1,2]. Another future work is to give
a 2-categorical definitions of directed link graphs.
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Abstract

Reduction rules in Interaction Nets are constrained to pattern match exactly one argument at a time.
Consequently, a programmer has to introduce auxiliary rules to perform more sophisticated matches. We
propose an extension of Interaction Nets which facilitate nested pattern matching on interaction rules. We
then define a practical compilation scheme from extended rules to pure interaction rules. We achieve a
system that provides convenient ways to express Interaction Net programs without defining auxiliary rules.

Keywords: Interaction nets, pattern matching, programming language design.

1 Introduction

Interaction Nets [5] can be considered as a graphical-or visual-programming lan-
guage. Programs are expressed as graphs, and computation is graph reduction.
From another perspective, Interaction Nets are also a low level implementation lan-
guage: we can define systems of Interaction Nets that are instructions for the target
of compilation schemes of other programming languages. For instance, Interaction
Nets have been used for the implementation of optimal reduction [4,6] and other
efficient implementations of the A-calculus [8]. In addition, there has been various
implementations of Interaction Nets [7,9]. Despite that we can already program
in Interaction Nets (they are Turing complete), they still remain far from being
used as a programming language. Drawing an analogy with functional program-
ming, we only have the pure A-calculus that is without syntactic sugar, constants,
data-structures, etc.
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In this paper we take step towards developing a richer language based on In-
teraction Nets. Interaction Nets have a very primitive notion of pattern matching
since only two agents can interact at a time. Consequently, many auxiliary agents
and rules are needed to implement more sophisticated matches. These auxiliaries
are implementation details and should be generated automatically other than by
the programmer. To achieve this, we extend Interaction Nets to allow rules with
nested patterns to be defined. We then give a compilation scheme from extended
to ordinary interaction rules.

There has been several works that extend Interaction Nets in some way (see
Section 6.2). Sinot and Mackie’s Macros for Interaction Nets [10] are quite close
to what we present in this paper. They allow pattern matching on more than
one argument by relaxing the restriction of one principal port per agent. The main
difference with our work is that their system does not allow nested pattern matching.
Our system facilitates nested/deep pattern matching of agents.

The rest of this paper is organised as follows: In the next section we give a brief
introduction to Interaction Nets. In Section 3 we motivate our work through an
example. We give the proposed extensions in Section 4, followed by the compilation
schemes in Section 5. In Section 6 we discuss some implementation issues. Finally,
we conclude the paper in Section 7

2 Interaction Nets

We review the basic notions of Interaction Nets. See [5] for a more detailed presen-
tation. Interaction Nets are specified by the following data:

o A set X of symbols. Elements of ¥ serve as agent (node) labels. Each symbol
has an associated arity ar that determines the number of its auziliary ports. If
ar(a € ) = n, then a has n+ 1 ports: n auxiliary ports and a distinguished one
called the principal port.

Xp

ol

xn xl

We use the textual notation zg — a(z1,...,z,) to represent an agent o where 1z
is the principal port and 1, ..., z, are its auxiliary ports.

e A net built on ¥ is an undirected graph with agents at the vertices. The edges
of the net connect agents together at the ports such that there is only one edge
at every port. A port which is not connected is called a free port.

* Two agents (@, 3) € ¥ x X connected via their principal ports form an active pair
(analogous to a redex). An interaction rule ((a, f) — N) € R replaces the pair
(cr, B) by the net N. All the free ports are preserved during reduction, and there
is at most one rule for each pair of agents. The following diagram illustrates the
idea, where N is any net built from X.
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: ° e : - N
. . x — =y
We represent this rule textually as a(x1, ..., z,) X B(y1, ..., ym) — N. The order of
writing the active agents in this textual form is not important. The same rule can
be written as B(y1, ..., Yym) X a(z1,...,2,) — N. We use the notation Ny = Ny
for the one step reduction and =* for its transitive and reflexive closure.

Interaction Nets have the following property [5]:

e Strong Confluence: Let N be a net. If N = N; and N = Ny with Ny # No,
then there is a net N3 such that Ny = N3 and Ny = Nj.

3 Motivations

In this section, we motivate our work by investigating how we can translate a
function with pattern matching into Interaction Nets.

Example 3.1 Our example is the following definition of a function that returns
the last element of a list:

fun lastElt [x] = x
| lastElt (x::xs) = lastElt xs;

If we consider a functional programming language as an orthogonal term rewriting
system, we can translate programs into Interaction Nets [3]. In this way, if we take
both the name of the function and the first argument as agents, we can represent
the above function as interaction rules:

o) () ) CEOBNS
= =
r X r X r X r
() (oms) ()
y oy y oy

However, these rules are not valid in Interaction Nets as the left hand side (LHS)
of a rule must be a net with exactly two agents (active pair).

Therefore, to encode this example in interaction nets, we have to introduce
auxiliary agents and rules:

_>/\
r x r x
© @~ @ |
r P RAY r X XS
(g *@@ (o)
r Xy s r X y ys

This set of rules will compute and return the last element of a list. We argue
that the introduction of the auxiliary agents to the system is not satisfactory from
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a programmers perspective. Programmers want to write simpler programs rather
than more complicated ones. To solve this problem, we extend the definition of
rules to facilitate nested pattern matching.

4 Interaction rules for nested patterns (INP)

4.1 An extension of the definition of interaction rules

In this section we present our framework INP that extends ordinary interaction
rules (ORN) so that we can perform rewritings between nested agents. The main
difference from ORN is that we allow the left hand side of a rule to contain more
than two agents. The definition of agents and nets remain the same as for ORN.

Definition 4.1 A nested active pair P is inductively defined as follows:

Base: Every active pair in ORN is a nested active pair

represented textually as: (a(z1,...,Zn) X B(Y1, -y Ym))-

Step: A net obtained as a result of connecting the principal port of some agent to
a free port in a nested active pair P is also a nested active pair.

We represent this nested active pair textually as (P, y; — y(21, ..., 21))-

Definition 4.2 An interaction rule in INP is given by P — N where P is a nested
active pair. All the free ports are preserved during reduction, and there is at most
one rule with P in any given system.

Proposition 4.3 ORN C INP.

Proof. All rules P — N where P contains just two agents (active pair) are valid
ORN rules. These active pairs fall into the base definition of nested active pairs. O

We aim to extend ORN in a conservative way and retain the property of strong
confluence. For this purpose, we introduce a condition that restricts the formation
of the set of interaction rules in INP.

Definition 4.4 A set of nested active pairs P is sequential if and only if, when
(P, yj —y(21,....21)) € P, then
e for the nested pair P, P € P and,

» for all free ports y in P except the y; and for all agents a, (P, y — (w1, ..., wp)) &
P.
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As an example, consider the following nested active pair P in a sequential set P:

represented textually as (a(z1,...,2n) X B(y1, -, Ym), y1 —¥(21,...,21)). Then we
can not have any other nested active pair («, ) such that the port y; is free. Thus,
the following definitions violet the condition of the set P:

For clarity, we draw lines and triangles on auxiliary ports that connect to nested
agents. As an example, we represent a nested active pair (P, y,, — (w1, ..., wi))
graphically as follows:

a B

A
ol

Note that this nested active pair belongs to the set P because P € P.

Definition 4.5 A set of rules R in INP is well-formed if and only if,

 there is a sequential set which contains every nested active pair of the LHS in R,

e for every rule P — N in R, there is no interaction rule P’ — N’ in R such that
P’ is a subnet of P.

Example 4.6 The rule set in Example 3.1 is well-formed

and the following computation can be performed:
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In the above example, the rewriting is strongly confluent because there is no
critical pair. We loose this property if there are more than two rules that can be
applied to the same net.

Example 4.7 We can encode the following definition of the parallel-or function
por:

por(True,y) = True

y,True) = True

as a set of INP rules:

PRIPe T

=) () / ) () K
r D ro D r pnr D

However, this is not a well-formed set of rules because there is no sequential set which
contains both (por(z) X Pair(yi,ys), y1 — True) and (por(z) X Pair(yi,vy2), yo—
True). Therefore, the reduction is not strongly confluent (but still confluent in this

53 [
OO -

On the other hand, the following rule set of the or function is well-defined:
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Proposition 4.8 (Strong Confluence) If a given rule set R in INP is well-
formed, then the reduction in R is strongly confluent.

Proof. Assume that P = N € R. There are two cases where critical pairs can
arise for a net which contains P:

case 1: there is no overlap between rules. We assume that there is a rule P, —
N; € R where P; does not overlap with P. In this case, the reduction is strongly
confluent:

N
s LA ST
T R A R
T T
R R A
T

case 2: there are overlaps between rules.
case 2.1: We assume that there is a rule P, — Ny € R where P, is a subnet of
P.

i
|
|

N |
|
|
|

e A I i I

T A LN, | i
TToT i
T T
This case can not arise if R is well formed. Therefore P, — Ny ¢ R
case 2.2: We assume that there is a rule P; — N3 € R where P3 contains the

subnet of P'.

There is no sequential set which contains both P and Ps, therefore P3; — N3 ¢
R.

|
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5 Translation

In this section, we define the translation function T from interaction rules with
nested active pairs to interaction rules with only active pairs:

e If a nested active agent contains an active pair of just two agents, then the
translation is the identity:

T 6 ymiy, - FT‘..‘.‘{‘V‘(‘:.“:

Xn Xn Xt Vm N

Xn X Vm N Xn Xt Vm N

¢ The translation of a rule P — N where

P = <a(pla ---:pw) X IB(q17 s Gk "aQU)a k. — 7('217 "'azl)a a> where a is a sequence
of agents, generates the following rules:

ca(pry e pw) X OB(GL Qs @u) = Gk — aB(q1s s Q=1 Tt 15 s Qus P15 o Do)
where a3 is a new agent named from a concatenation of the LHS nested active
pair ageﬁts. Since ¢ is connected to the principal port of v, an active pair
(af,v) will be formed.
- <aﬁ(Q1, s Q15 Qlt1s s Qus P1s s Pw) X (214 0y 21)s a> — N. This rule is recur-
sively translated to obtain a rule with just an active pair.
Graphically, this translation is given by:
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Example 5.1 We give the translation of the function in Example 3.1 that computes
and returns the last element of a list.

Lemma 5.2 Let R be a well-formed rule set in INP and Ry, Ry € R. Then, a rule
set T[R1]UT[R2] contains no rule such that P — Ny and P — Ny where N1 # Nj.

Proof. Let R1 = P1 — M1 and RQ = PQ — MQ.

case 1: the active pairs in P; and P, are different. In this case, distinct names are
introduced by T for those active pairs respectively. Therefore, every LHS of the
rules generated by recursively applying T also have distinct active pairs.

case 2: the active pairs in P, and P, are the same. Because both P, and P»
belong to the same sequential set, then P; and P, have a same sequence of agents
succeeding from the active pair. Therefore, in the set obtained from this sequence
by using T, there is no rule such that P — M; and P — M5. For the remaining
agents, it turns out that there is no such rule by applying case 1.

O

Proposition 5.3 Let R be a well-formed rule set in INP. The set UT[R} where
R € R is a correct rule set in ORN.
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Proof. From the definition of T, it is clear that every LHS of rules obtained by
using T contains only an active pair. Moreover, by Lemma 5.2, there is no rule
P — Nj and P — N> in the resulting rule set. |

Proposition 5.4 (Conservativity) Let R be a well-formed set of rules in INP. If
P — N € R, then P =* N by using the rules obtained by the translation T[P — N]|.

Proof. If P is just an active pair, then we can perform P = N because T[P —
N]=P — N.

If P = (a(x)XA(y,y), y—(z), a) where x,y,z are sequences of auxiliary
ports and a is a sequence of agents, then

T[P — N] = a(x) X B(y,y) = af(x,y) —y, T[(aB(x,y) X y(z), a) — N].

By using the first rule,

a(x) MIB(Yay)a y—’)’(Z), a = aﬁ(xa}’) _V(Z)a a.

Applying recursively this operation to the rule (aﬁ(x,y) X y(z), a> — N and the
nested agent pair af(x,y) X v(z), we will perform P =* N. O

6 Discussion

6.1 Implementation

In this section we briefly discuss implementation issues of INP. There are two ap-
proaches to implement INP. One is to translate into ORN rules then use existing
evaluators of Interaction Nets. The other is to implement them directly. Here we
look at this second option, and show how the main tasks of performing computation
in this framwork can be achieved. Our aim here is to show that a direct implemen-
tion of INP can be done quite easily. We describe a simple method of achieving
this.

The main tasks of an Interaction Net evaluator are to locate the next active pair
to reduce, find the matching rule, and apply it to the active pair.

Locating the next active pair can be done locally during rewrite; while rewiring
the ports, we check if an active pair is formed then push it into a stack. Reduction
will then pop the active pairs from the stack and find the matching rule to apply.

We can store rules in a hash table with a key formed from an ordered concate-
nation of the (LHS) active pair names. Since INP rules can have more than one
active pair of the same agents, we maintain a list such that each key maps onto a
list of rules that share the same active pair names. We iterate through the list to
find a rule that matches the structure of the active pair to be reduced.

Although ORN will find the matching rule in constant time (each key will only
map to one rule) the total number of interactions I performed in ORN: I(ORN) >
I(INP) for a system with nested agents, and I(ORN) = I(INP) if there is no nested
agents. This comes from the fact that ORN introduces extra auxiliary rules for
pattern matching.
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If we define the cost of computation to be the number of interactions performed,
then INP provides an efficient model. However, without empirical studies we are
not able to say which system is efficient in terms of execution speed.

6.2 Related Works

In this section, we discuss other approaches to nested pattern matching by using
methods that have been proposed as extensions of Interaction Nets.

Pattern matching on more than one argument: Sinot and Mackie [10] intro-
duced Macros for Interaction Nets and they allow pattern matching on more than
one argument by relaxing the restriction of one principal port per agent. Their
system requires all principal ports of an agent in the LHS net of a rule to be con-
nected to principal ports of other agents for the purpose of holding the property
of strong confluence. Therefore, this system is useful as a conservative extension.
However, we can hardly encode the function lastElt as it requires nested pat-
tern matching. This is because in the case that the Cons agent has two principal
ports, we have to write all cases as follows:

éig ) 6

Alexiv’s interaction nets with multiple principal ports (IMNPP) [1] is also useful
for this purpose because this system also allows more than one prlncipal port per
agent. However, interactions are still performed only on an active pair. Therefore,

in the case of nested pattern matching, we have to introduce auxiliary agents and
rules as in Section 3. As another solution, we can introduce rules between Cons
and Nil:

x*‘ ) x; & 59
@ yys - | y r” .V_Vs

These cause computation between the list structures even if it is not needed.

5@

@
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Computation for nets: Bachet [2] proposed computation for nets on interaction
rules as abbreviations, where nets are captured as an agent and reductions of
the agent are realized by the rules corresponding to the computation of the net.
As an example of applying this method to nested pattern matching, we consider
our example function lastElt. One solution is to define the agent lastElt by
using other agents that have already been defined. It is not simple to find a good
combination with those agents. As another solution, we introduce abbreviations

o y

However, we have to define rules between lastElt and Cons for the case that
those abbreviations are unfolded, therefore we have to introduce auxiliary agents
in the end.

for list structures:

7 Conclusion

We have shown how to extend Interaction Nets to facilitate nested pattern matching
without introducing auxiliary rules. This provides a convenient and a more natural
way of expressing Interaction Net programs. We see this extension as a positive
step towards using Interaction Nets as a practical programming language.
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Abstract
When sharing is studied in the A-calculus, some sub-calculi often pop up, for instance AI or the linear
A-calculus. In this note, we propose a definition and a complete classification of a large class of such
sub-calculi.
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1 Introduction

Sharing is an important but difficult issue, in particular in the A-calculus. Some-
times, in order to simplify the problem or tackle it in a more focused way, attention
is restricted to a particular subsystem of the A-calculus. Such subsystems include
A, where erasing is forbidden, or the linear A-calculus, where all terms are lin-
ear [1]. These subsystems are defined by imposing some restrictions on the number
of occurrences of bound variables. In this note, we propose to generalise this idea
and study in a systematic way such sub-calculi.

2 Sub-calculi
We assume basic knowledge of the A-calculus, see [1] for more details.

Definition 2.1 We define the number of free occurrences of a variable x in a A-term
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t, written [t|,, as follows:

|, =1
lyl, =0
tul, = [t|, + |ul,
|[Az.t|, =0
[Ay.tl, = t],

Remark that [t|, is well-defined on a-equivalence classes (i.e. if ¢ =, u then
|t|,, = |u|, for any variable x).

Our purpose is to study subsystems of the A-calculus. One possible way to char-
acterise such subsystems in the most general fashion would be to have a predicate
P on A-terms such that ¢ belongs to the subsystem if and only if P(¢) holds. This
representation is too general to be interesting: there is little hope to obtain a nice
characterisation theorem in such a general setting. We thus focus our attention on
the following, more restricted class of subsystems.

Definition 2.2 If P is a predicate on natural numbers, we define the set of Ap-
terms as follows:

tuz=x|tu
| Ax.t if P(|tl,,)

In addition, we may or may not impose that P(|t|,) holds for every free variable
x of an open term t. If we do, we say that we are under the strict convention; if
we do not, we say that we are under the relazed convention. We also define the
Ap-calculus as the set of Ap-terms equipped with @-reduction — 3.

The strict convention entails some unpleasant syntactic accidents, as will be
shown later. These accidents would disappear if we added (unconstrained) con-
stants. However, the pure A-calculus view of constants is exactly as free variables,
which should thus be unconstrained. Consequently, we always assume the relaxed
convention, unless otherwise stated.

With such a definition, it is natural to wonder how well P characterises A\p. From
now on, operations on propositions are always implicitly lifted to predicates, which
means that, for instance, if P and Q are predicates, PAQ is the predicate defined by,
for allm, (PAQ)(n) = P(n)AQ(n). Moreover, P, Q, implicitly denote predicates on
natural numbers. We also allow the definition of predicates by partial application
of infix binary predicates, in a Haskell-like style, e.g. (> 3) is the predicate defined
by, for all n, (> 3)(n) = (n > 3).

Proposition 2.3 (Ap C \g) <— (P = Q).

Proof.
= Assume n > 1 and P(n). We can build the term ¢t = Az.z...x € Ap C Ag.
——

n
Then ¢ € Ag, hence Q(n), by definition of Ag. For the case n = 0, we use
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instead t = A\z.z where z is a free variable (remember that we assume the relaxed
convention).

< Assume ¢t € Ap and let Az.u be a subterm of ¢t. By definition of Ap, P(|ul,)
holds, and so does Q(|ul,). Since this holds for every sub-abstraction of ¢, we
may conclude ¢ € Ag.

(]

Remark 2.4 The left-to-right implication is false under the strict convention with-
out constants, for instance A\| = )\(:0) = .

In particular, an immediate corollary of Proposition 2.3 is that Ap = Ag if and
only if P < Q. In other words, P exactly characterises Ap.

3 Stability

Definition 3.1 A set of A-terms S is said to be stable if it is closed under (-
reduction, i.e. if whenever ¢ € S and t —3 u, then u € S. Moreover, we also say
that P is stable if Ap is stable.

The notion of Ap-calculus only makes sense when the set of Ap-terms is stable.
Fortunately, we can characterise this in a slightly more operational way.

Lemma 3.2 P is stable if and only if
Vm >0,n>0,0<k<nPm)APn) = Pn+k-m-—Ek).

Proof. First remark that, with the notations of the lemma, n + k-m — k > 0,
because n — k > 0 and k- m > 0. Let’s consider an arbitrary g-reduction under
an arbitrary binder (if the reduction is not under a binder, this is irrelevant to the
kind of conditions we have):

Ay.Cl(Ax.t)u] —5 Ay.Clt{x := u}].

Let us write m = [t|,, n = [C[(Az.t) u]|, and k = |u[,. We thus have |C[t]|, =n—Fk
and |C[t{z := u}]|, = n+ k- m — k. The reduct thus belongs to Ap if and only if
P(n+k-m—k) holds for all n and k (corresponding to every choice of outer binder
Ay). Indeed, P is stable if and only if P(n + k- m — k) holds whenever P(m) and
P(n) hold. O

Theorem 3.3 P is stable (i.e. the Ap-calculus is well-defined) if and only if
Vm > 0,n > 1.P(m) AP(n) = Pim+n-—1).

Proof. Using Lemma 3.2 and the fact that the other implication is trivial, we
assume that Vm > 0,n > 1.P(m) A P(n) = P(m +n — 1) and we only have to
show that P(n+ k-m — k) holds if m > 0, n > 0, 0 < k < n, P(m) and P(n). If
n = 0, this is trivially true, because k = 0, thus n+k-m —k = 0, and P(0) = P(n)
holds by hypothesis. We may thus assume n > 1, and we prove the statement by
induction on k. If k = 0, it is true because n + k- m — k = n and P(n) holds
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by hypothesis. Let 0 < k < n — 1 and assume P(n + k - m — k) holds. Then,
Pn+(k+1)-m—(k+1)) =P(m+(n+k-m—k)—1) holds using the assumption,
the induction hypothesis, and the fact that n +k-m — k > 1 because k <n —1
and k£ -m > 0. We indeed conclude that the statement holds for all £ such that
0<k<n. O

4 Examples

Example 4.1 We use Theorem 3.3 to recover some well-known stability results.

* A7 (aka. the A-calculus) is stable;

* A=) (aka. the linear A-calculus) is stable;
* A1) (aka. AI) is stable;

* A\<1) (aka. the affine A\-calculus) is stable.

Proof. We only show the proof for A(>;). Assume m > 1 and n > 1, then m +n —
1>1+1—-1=1. Using Theorem 3.3, we conclude that (> 1) is stable. The proof
shows that 1 plays a special role in this framework. O

Example 4.2 There are also some less usual sub-calculi, with a more questionable
computational content.

e )\, (where there is no A-abstraction) is stable (under the strict convention, this
calculus is empty);

* A(=o) (where there is no occurrence of bound variables) is stable (under the strict
convention, this calculus is empty);

* A(>2) s stable;
* more generally, if b > 1, A(>) is stable;

* however, if b > 2, A< is not stable.

Proof. The first two sub-calculi are degenerated, which is evidenced by the fact
that the condition in Theorem 3.3 is true because the premises of the implication
can never be satisfied. Let b > 1, we verify that A>p is stable. Let m > b and
n>b,thenm+4+n—1>2-b—12>b, since b—1>0. Thus A(Zb) is stable. O

Using Theorem 3.3, we give some non-trivial sub-calculi (or non-sub-calculi) of
the A-calculus (of course only those of the form Ap for some P).

Example 4.3 Let odd(n) = (3k > 0.n = 1+ 2 - k), then odd is stable. The “odd
calculus” Agqq is a simple, non-trivial stable sub-calculus.

Proof. Assume odd(m) and odd(n). Then, there exist k, k" > 0 such that m =
142-kandn =1+42-k". Thenm+4+n—1= (1+42-k)+(1+2-k)-1=1+42-(k+Fk)
with k 4+ &k’ > 0, and indeed odd(m + n — 1) holds. O

Remark 4.4 The “even calculus” Aeven defined by even(n) = (Fkn = 2 - k) is
not stable (we are therefore reluctant to call it a calculus). This can be seen as a
consequence of Theorem 3.3 or directly: Ay.(Az.xz)yy —3 A\y.yyy.
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In fact, the previous example can be generalised to the following large class of
stable sub-calculi.

Example 4.5 Let ¢ > 1 and multy(n) = (Fk > 0.n = 14k-q), then Apyy, is stable.
Proof. Similarly, using (1+k-q)+ (1 +k -q)—1=1+(k+Fk)-q. O

We will see in Section 6 that essentially all stable Ap-calculi can be decomposed
in calculi of this form.

5 Syntactic Properties
Theorem 5.1 If P is stable, the Ap-calculus is confluent.

Proof. Assume u; %H t —>E ug in the Ap-calculus. Then there exists a A-term v
such that u; —% v Z;<— u9, by confluence of the A-calculus, and v is a Ap-term by
stability of P. O

Theorem 5.2 If P is stable, the Ap-calculus is strongly normalising if and only if
P(n) does not hold for any n > 2.

Proof. If P(n) does not hold for any n > 2, the Ap-calculus is a subsystem of

A(<1), i.e. the affine A-calculus, which is strongly normalising. Conversely, assume

that P(n) holds for some n > 2. Then we can build the non-normalising Ap-term

Ae.g...z)(A\r.g...x). O
R N

n n

6 Classification

With Theorem 3.3 in hand, we characterise further the sub-calculi of the A-calculus
(of the form Ap for some P).

Proposition 6.1 If P and Q are stable, then P N\ Q is stable.
Proof. Straightforward, even without Theorem 3.3. a
Remark 6.2 If P and Q are stable, P VvV Q is not necessarily stable.

Proof. Let P(n) = (3k > 0mn =1+2-k) and Q(n) = (3k > 0n =1+3-k).
According to Example 4.5, P and Q are stable. (P Vv Q)(3) holds since P(3) holds,
(P Vv Q)(4) holds since Q(4) holds, but (PV Q)(3+4—1) = (P Vv Q)(6) does not
hold since neither P(6) or Q(6) holds. In other words, PV Q is not stable. 0

Proposition 6.3 If P is stable and P(2) holds then P(n) holds for all n > 2.

Proof. By induction on n. P(2) holds by hypothesis. Assume P(n) holds, then
using Theorem 3.3, P(n+2 — 1) = P(n + 1) also holds. O

Proposition 6.4 If P is stable and if P(0) and P(n) hold for some n > 2, then
P(n) holds for all n > 0. In other words, we get the full A-calculus.

Proof. We show that P(k) holds for 0 < k < n by reverse induction on k. P(n)
holds by hypothesis. Let 1 < k < n and assume that P(k) holds. Then P(k —1) =
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P(0 + k — 1) holds using Theorem 3.3, stability of P, the induction hypothesis,
and the facts that & > 1 and P(0) holds. In particular, P(2) holds and we use
Proposition 6.3. O

As evidenced in Remark 6.2, disjunction is not a well-behaved operation with
respect to stability. However, the following proposition exhibits the particular be-
haviour of 1, and tends to show that, to some extent, the choice of P(1) is not
relevant for the stability of P.

Proposition 6.5 (i) if P is stable, then PV (= 1) is stable;
(ii) if PV (= 1) is stable and either P(0) or P(2) does not hold, then P is stable.

Proof.

(i) Assume P is stable, (P V (= 1))(m) and (P V (= 1))(n). If m = 1, then
m+n—1=mnand (PV (= 1))(m+n—1) holds; and similarly if n = 1.
Otherwise, both P(m) and P(n) hold, and (P V (= 1))(m + n — 1) indeed
holds.

(ii) Assume PV (= 1) is stable, P(m) and P(n) hold. Then (PV (=1))(m+n—1)
holds. Either P(m + n — 1) holds and we are done, or m +n — 1 = 1, hence
m =n =1 and P(1) holds, because the case m = 0 and n = 2 is excluded.

O

Lemma 6.6 If P is stable and there exists n > 2 such that P(n) holds, then there
exists ¢ > 1 such that P(1+ k- q) holds for every k > 1.

Proof. With the notations of the lemma, let ¢ = n — 1. We prove by induction on
k > 1 that P(1 + k- q) holds. This is true for £k = 1. Assume P(1 + k - ¢) holds,
n+(1+k-q)—1=1+4+(k+1)-qand P(1+ (k+1)-q) holds, using Theorem 3.3.0

We now have everything in hand to exhibit a complete classification of the Ap-
calculi.

Theorem 6.7 P is stable if and only of one of the following holds for all n:
(i) P(n) < L;
Pn) < T;
P(n) < (n=0);
P(n)< (n=0vn=1);
there exist 0 <p <w and 1 < q1 < ... < g, pairwise non divisible such that:
P(n) < (3ki,... . kpy 20n=1+%" - ki ¢);
(vi) there exist 1 <p <w and 1 < q < ... < g, pairwise non divisible such that:
Pn) & (Fkr,.. ky>0,1<j<pkj >1An=1+> . ki q)
Moreover, this decomposition is unique.
Proof. If one of the cases (i-iv) holds, it has already been noted in Section 4 that
P is stable. If (v) or (vi) holds, this is a consequence of Theorem 3.3, similar to

Example 4.5. Conversely, suppose P is stable. We distinguish cases according to
whether or not P(0) holds.
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e If P(0) holds, does there exist n > 2 such that P(n) holds ?
- If there is such a n, we are in case (ii), thanks to Proposition 6.4.
- If not, we are indeed in case (iii) or (iv).

e If P(0) does not hold, we look at P(1).

- If P(1) holds, we prove by induction on p > 0 that there exist 1 < ¢ < ... < gp
pairwise non divisible such that (3k1,...,k, > 00 =1+37, ;o ki-q;) = P(n).
This is true for p = 0. Assume this is true for some p, and consider the
smallest n not equal to (1 + >y, ki - ¢;) for some ki,...,k, > 0 such that
P(n) holds. There are two cases. If there is no such n, that means that the
condition is verified and P is fully described. Otherwise, let g,1 = n — 1.
Indeed, by construction, g,+1 > ¢, and none of q1,...,q, is a divisor of g,11.
Thanks to Theorem 3.3 and in a similar way to Lemma 6.6, for all k,11 > 0,
P(1 4+ kpt1 - gpt1). Then, using again Theorem 3.3, the statement holds for
p+ 1. If the process stops, the equivalence is clear. If it does not, let’s write
Pp(n) = (Fk1,....kp >0 =1+3 ", ki q). Forall p, Py = Ppi1 =P
where the first implication is strict. The sequence (Pp), is strictly increasing
and bounded, it thus has a limit P,. There is no n such that P(n) but not
P, (n), because this would contradict the construction. We conclude P < P,,.

- If P(1) does not hold, let’s consider the smallest n > 2 such that P(n) holds.
If there is no such n, we are in case (i). Otherwise, we can proceed as in the
previous case, starting at p = 1, with ¢ = n — 1, and obtain case (vi).

Unicity is clear: the different cases do not overlap, and in cases (v) or (vi), the
non-pairwise divisibility of ¢1,. .., g, ensures that there is no redundancy. a

Remark 6.8 Theorem 6.7 gives a complete classification of the stable Ap-calculi
in terms of equality, but this is not necessarily the “best” description. For instance,
we have seen that (> 3) is stable, but its description using Theorem 6.7 is case
(vi) with p = w and ¢; is the i-th prime number. In particular, it is not a finite
description.

7 Conclusion

We have defined and given a complete characterisation of a class of subsystems of the
A-calculus taking into consideration the number of occurrences of variables, which
is a crucial issue for sharing. We recover well-known calculi such as AI or the linear
A-calculus, but we also discover unconventional calculi whose interest as a compu-
tational model remain to study. Moreover, our characterisation is very algebraic
and may lead to a better understanding of the A-calculus and its subsystems.
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Abstract

This paper takes first steps towards a formalization of graph transformations in a general setting of inter-
active theorem provers, which will form the basis for proofs of correctness of graph transformation systems.
Whereas graph rewriting is usually performed by mapping a pattern graph into a source graph by means of
a graph morphism and then carrying out operations on the image node and edge set, this article generalises
the notion of pattern graph to path expressions, which are formulae in a fragment of first-order logic. We
examine the correspondence with traditional graph rewriting and show that this interpretation is beneficial
when formally reasoning about model transformations with the aid of proof assistants.

Keywords: Graph Transformations, Theorem Proving

1 Introduction

Graph rewriting examines which structural changes are engendered when applying
rewrite rules to a graph. There is no unique approach to graph rewriting - one may
cite algebraic [Bar03] and categorical [CMR ™96, EHK*97] formalisms.

The discipline has accumulated an impressive amount of results on properties
of rewrite systems (such as confluence and termination) resulting from specific rule
formats [Plu99]. Recently, there is a growing practical interest in graph rewriting
in the context of model driven engineering, where a software or hardware artifact is
represented graphically and can be refined or refactored by the application of graph
rewriting rules. Several graph rewriting tools are available. They emanate from
foundational work and are usually equipped with some analyses of rule properties
[Tae03,KS06,Agr04], or take a more pragmatic view (ATL [BBDV03] and Kermeta
[MFV*05]).

In spite of a large body of work on graph transformations, the question of veri-
fication of transformations “in general” is far from settled. The foundational work

1 Email: strecker@irit.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs


mailto:strecker@irit.fr

STRECKER

of [Cou90] aims at a logical characterization of graph transformations, where effec-
tive verification of structural properties is not a primary concern. Usually, however,
graph transformation systems are perceived as extensions of term rewriting systems,
so much of the effort has gone into investigating specific properties such as conflu-
ence and termination [Plu99], which does not necessarily allow to determine whether
a graph has a certain shape after transformation. These questions may be answered
for graph replacement systems having a restricted structure [FM97], for proper-
ties expressed in specialized logics such as monadic second order logic [KS93] or
type systems [BCE105]. There are automated approaches based on model checking
[Var04], which however can only handle graphs with an a priori bounded number of
elements. [RD06] presents techniques for dealing with specific structural properties
such as multiplicities.

However, in some circumstances, it is useful to resort to a more general setting,
in order to express stronger properties or to overcome limitations of a restricted rule
format. This gives us the same kind of advantage a program logic may have over
a static analysis for determining the correctness of an imperative program — and it
suffers from the same drawbacks, notably a sometimes heavy user intervention to
carry out interactive proofs.

The verification of structural properties will be the main focus of this paper.
The work reported here has grown out of an effort to formalise model transforma-
tions in interactive proof assistants. A first attempt [SG06], aiming at formalising
traditional graph rewriting as sketched above, required complex reasoning about
graph morphisms. It has turned out that replacing the pattern graph by formu-
lae over graph structure (which we will call path formulae in the following) yields
much more manageable proof obligations. At the same time, path formulae are
more expressive than pattern graphs and have therefore an interest in their own,
independently from concerns about formal verification.

Path formulae can be understood as formulae over a fragment of first order logic
(possibly including transitive closure), which are interpreted over graphs. Deter-
mining whether a graph satisfies a path formula is decidable, which is indispensable
for effectively applying a transformation rule to a given graph. On the downside,
validity of path formulae may not be decidable, so that interactive proofs become
necessary.

The paper is structured as follows: In Section 2, we informally introduce gen-
eralised graph transformations. The formal model is presented in Section 3. In
Section 4, we show how we can recover the traditional model of graph rewriting.
We take a glimpse at how to reason about graph transformations in a proof assistant
in Section 5 before concluding with an outlook on future work.

2 Example Transformations

To set the stage, we describe two toy transformations: a transformation duplicating
a graph, and another one implementing a simple garbage collector.

The purpose of the graph duplication transformation is to generate a new graph
consisting of two exact copies of the original graph. We assume that the original
graph has nodes of type Node, with edges of type E between them. For the purposes
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of transformation, we need nodes of type Orig, supposed to mark the nodes of the
original graph during transformation, and edge types Or (between Orig and Node)
and Cp (between a node and its original).

Duplication proceeds in several steps: First, we mark all nodes of the original
graph with Orig nodes. We then create a duplicate node for each original, memoris-
ing the relation between the original and the clone with a Cp edge. We can similarly
reproduce the edges of the original graph in the copy. All that remains to be done
now is to erase the auxiliary marking.

Fig. 1. Duplicating a graph

An example graph and the result of its transformation, just before deletion of
the Cp edges and the markers, is shown in Figure 1. This is a screen shot of graphs
produced by the AGG tool [Tae03], based on a categorical approach, which allows to
conveniently model this kind of transformation (a more detailed comparison follows
in Section 4).

How do we formalise the marking phase, i.e. the first step of our transformation?
In our setting, a transformation rule is composed of two elements: an application
condition and an action part. The application condition, a path formula F' express-
ing if and where a rule can be applied, says that the rule can operate on any node
n of type Node which is not already marked by some node m of type Orig:

F(n) = Node(n) A =3m. (Orig(m) Am o n)

Here, m o g represents an Or edge between m and n.

The action part (not shown here) expresses what we do if F' is satisfied for a
node n: We generate a new node, say m', having type Orig, and we create an
Or-edge (m',n). We will come back to this example in Section 3.3.

Of course, a single transformation step of this kind will not suffice to mark all
nodes of a graph. Rather, we have to iterate the rule until no further application is
possible, i.e. until F' is false for all nodes of the graph. We will briefly look at this
question in Section 5.

The garbage collector is an example of a transformation that is not directly
expressible in traditional graph rewriting approaches. We assume to have a number
of Root objects and a number of Node objects. Root objects are linked to Nodes
through rn edges, Nodes are linked among themselves through nn edges. Any Node
not accessible from a Root is considered as garbage.

The predicate G(n) saying that node n is garbage can be written as the path
formula

*
Gmn)=-3rn'. r = 'An’ 2 0
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where — is an rn edge (and similarly for nn), and the “star” is transitive closure.

G(n) is the application condition of a rule collect, whose action part just says
that n should be deleted (in doing so, all adjacent edges disappear as well).

In the case of G(n), we have chosen not to make the typing information explicit in
the rule itself. In fact, it can be deduced from general typing predicates, expressible
as path formulae, that could form the “background theory” of the application. For
example, the typing of the rn edge is stated as

Vrn. (r = n) — Root(r) A Node(n)

3 Formal Model

In this section, we formally present the basic notions of our graph rewriting ap-
proach, notably graphs, graph transformations and morphisms and some well-
formedness conditions we have to impose to ensure consistency of the model. Since
our development has been carried out in the Isabelle proof assistant [NPWO02], we
will use Isabelle’s syntax, which we will explain wherever needed.

3.1 Graphs

Our purpose is not to formalize any particular approach to graph rewriting, such as
the one based on category theory. Our model is set-theoretic. Roughly, graphs are
composed of a finite set of nodes, a finite set of edges and a typing of the nodes.

In order to create new nodes during graph rewriting, we have to have an infinite
supply of fresh nodes. We have therefore chosen to take the natural numbers as
the base type of our nodes. The edges are sets of pairs of nodes, indexed by an
edge type 'et, such as Cp and E in the introductory example. This precludes to have
more than one edge of a given edge type between two nodes. However, under this
definition, one can more easily use standard relational operators like composition
and transitive closure, which comes handy when defining the semantics of path
expressions further below. A node typing assigns a node type 'nt (such as Root and
Node) to each node of the graph. Altogether, this gives the following definition of
the type of graphs:

record ('nt, 'et) graph =
nodes :: nat set
edges :: et = (nat * nat) set
nodetp :: nat = 'nt option

(An option type T option has a distinguished value None, representing unde-
finedness, and defined values Some ¢ for ¢ and element of T.)

In a minimalistic model, node typing is inessential, but it is useful for describing
some structural aspects of graphs. However, we have excluded more complex node
attributes that would be required for formalising the semantics of an artifact. They
could be easily added by providing a mapping in the spirit of nodetp from the node
set to an attribute domain.

Finiteness of the node set is expressed by a structural well-formedness predicate,
just as the containment of the endpoints of edges in the node set and well-definedness
of node typing:
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struct-wf-gr :: ('nt, 'et) graph = bool
struct-wf-gr gr ==
(finite (nodes gr)) A
(V et. (Field (edges gr et)) C (nodes gr)) A
dom (nodetp gr) = (nodes gr)

Here, dom is the domain of a mapping, Field the union of the domain and
range of a relation. Access to a component of a record, such as nodes, is written in
functional notation.

3.2 Path expressions

The application of graph transformations to a graph is subject to an applicability
condition. Traditionally, this applicability condition is given in the form of a pattern
graph which is mapped, via a graph morphism, into a source graph to which the
transformation will be applied.

In a first attempt [SG06], we have faithfully coded this approach, but it has
turned out that the formulae resulting from this graph mapping require considerable
massaging for being usable any further. We try to circumvent this problem by
replacing the pattern graph by a predicate on (source) graphs, which at the same
time opens up the possibility of expressing more general properties (we come back
to this in Section 4).

However, we have to take care not to use too complex predicates: The least we
can expect from a graph rewriting engine is to be able to decide whether a predicate
is satisfied for a particular graph and thus, whether a rule is applicable to this graph.
Differently said, the model checking problem for the class of predicates should be
decidable, even though entailment need not be, see Section 5.

In the following, we present a logic of path formulae, which we have found
useful for expressing interesting properties (see the discussion in Section 4). How-
ever, there is no intrinsic reason to adopt precisely the language constructors we
have selected, and the decidability of the logic, as well as the complexity of model
checking, is greatly influenced by this choice. Similar notions can be found in
[YRST06,KS93,Ren03]

To have a fine control over the logic of predicates on graphs, we deeply embed
it into Isabelle’s higher order logic. We start by defining node set expressions
(representing sets of nodes) and path expressions (representing endpoints of paths):

datatype 'nt nodeset

= All-set — set of all nodes of graph

| Type-set 'nt — set of all nodes of given type

| Singleton-set nat — singleton containing constant
datatype ('nt, 'et) path

= Empty-pth — empty path

| Edge-pth 'et — edge with given edge type

| InvEdge-pth 'et — inverse edge

| Seq-pth ('nt, 'et) path ('nt, 'et) path — sequential composition
| Alt-pth ('nt, 'et) path ('nt, 'et) path — alternative
| Clos-pth ('nt, 'et) path — transitive closure

Based on this, we define path formulae, which are constructed from two base
cases (set and path formulae, for node set and path expressions, respectively), and
the usual Boolean connectives and quantifiers:

datatype ('nt, 'et) path-form
= S-form 'nt nodeset nat — set formula
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P-form ('nt, 'et) path nat nat — path formula

\
| Neg-form ('nt, 'et) path-form — negation
| Conj-form ('nt, 'et) path-form ('nt, 'et) path-form  — conjunction
-form ('nt, 'et) path-form — universal quantification
All nt, et th i 1 tificati

With the above, other connectives and the existential quantifier Ex-form can be
defined as abbreviation. Universal quantification does not use a named, but rather
a positional representation of variables (de Bruijn indices, [dB72]). Thus, variables
are not identifiers, but just numbers.

In our informal notation of Section 2, we have written S-form (Type-set T) n
simply as T'(n) and P-form (Edge-pth e¢) n n'as n —— n'/. For instance, the
application condition —3r n'. r <% n/ An' 25" n of the garbage collector
example of Section 2 becomes:

Neg-form (Ez-form (Ez-form

(Cong-form

(P-form (Edge-pth ) 1 0)
(P-form (Clos-pth (Edge-pth nn)) 0 2))))

The semantics of expressions respectively formulae is defined by means of func-
tions modeset-interp, path-interp respectively path-form-interp that interpret the
expressions respectively formulae under a variable interpretation I : nat = nat in
a graph gr.

consts
nodesel-interp :: [nat = nat, ('nt, 'et) graph, 'nt nodeset] = nat set
primrec
nodeset-interp I gr All-set = nodes gr
nodeset-interp I gr (Type-set t) = {n. nodetp gr n = Some t}
nodeset-interp I gr (Singleton-set n) = {I n}

consts
path-interp :: [nat = nat, ('nt, 'et) graph, ('nt, 'et) path] = (nat * nat) set

primrec
path-interp I gr Empty-pth = diag UNIV
path-interp I gr (Edge-pth e) = edges gr e
path-interp I gr (InvEdge-pth e) = (edges gr e)"—1
path-interp I gr (Seq-pth p p') = (path-interp I gr p) O (path-interp I gr p')
path-interp I gr (Alt-pth p p') = (path-interp I gr p) U (path-interp I gr p’)
path-interp I gr (Clos-pth p) = (path-interp I gr p) “*
consts
path-form-interp :: [nat = nat, ('nt, 'et) graph, ('nt, 'et) path-form] = bool
primrec
path-form-interp I gr (P-form p n n') = ((I n, I n') € path-interp I gr p)
path-form-interp I gr (S-form s n) = (I n € nodeset-interp I gr s)
path-form-interp I gr (Neg-form pf) = (= (path-form-interp I gr pf))
path-form-interp I gr (Conj-form pf pf') =
((path-form-interp I gr pf) A (path-form-interp I gr pf'))
path-form-interp I gr (All-form pf) =
(VY z. z € nodes gr —
path-form-interp ((I o (A z. z — 1))(0:=z)) gr pf)

In the above, UNIV is the set of all elements (of the given type), diag the
diagonal of a set (the relation (e,e)), the converse of a relation R is written R "—1,
and O is relation composition and o function composition.

Model checking of node set and path expressions, i.e. checking that a graph
gr satisfies a node set or path expression, reposes on well-known graph algorithms.
Universal quantification is relativised to the node set of the graph, which is finite
by well-formedness of graphs. Therefore, checking a universal formula only has to
examine a finite number of elements.
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3.3  Graph Transformations

Roughly speaking, a graph transformation rule should specify under which condition
the transformation is applicable, and what to do when applying the transformation
at a position in a source graph to obtain a target graph.

The applicability condition is just given by a path formula, as outlined in the
previous section. Note that this path formula may contain free variables, for example
n in G(n) of Section 2, which can be understood as references to nodes in the source
graph. Of course, in its coding as path formula, the free variables are numbers.

It is these numbers that we refer to when specifying the action: we say which
nodes are to be deleted respectively freshly generated (ndel resp. ngen) and which
edges are deleted resp. generated (edel resp. egen). Furthermore, we have to know
how to type the newly generated nodes. Altogether, graph transformations have
the form:
record g.’nt,.’.et) graphtrans =

— applicability condition

appeond :: ('nt, 'et) path-form
— mapping of nodes

ndel :: nat set — deleted nodes

ngen :: nat set — generated nodes

— mapping of edges

edel ::'et = (nat x nat) set — deleted edges, indexed by type
egen :: 'et = (nat * nat) set — generated edges, indexed by type

— typing of generated nodes
ngentp :: nat = 'nt option

For example, the marking rule of Section 2 can now be expressed by the trans-

formation:
mark :: (nodelp, edgetp) graphtrans
mark ==
( appcond = mark-F 0,
ndel = {},
ngen — {1}7
edel = X et. {},

egen = (X et. {})(Or:={(1,0)}),
ngentp = [1 — Orig]

Here, mark-F is the coding of the application condition. The application position
of the rule is node 0. No nodes and edges are deleted, a node numbered 1 is generated
and an Or edge is added between node 1 and 0. (The syntax for update of function
f at x with value y is f(z:=y).)

For graph transformations to make sense, the references to nodes to be deleted
have to be among the references to nodes in the applicability condition (thus, to the
free variables of the applicability condition), whereas references to generated nodes
should not occur in the applicability condition. We only generate a finite number
of nodes in each transformation step, and to all of these nodes we assign a type.
Similar constraints hold for deleted and generated edges. To summarise, structural
well-formedness of a graph transformation is expressed by the following predicate:

struct-wf-gt :: ('nt, 'et) graphtrans = bool
struct-wf-gt gt ==
(ndel gt) C (fv-path-form (appcond gt)) A
finite (ngen gt) A (fv-path-form (appcond gt)) N (ngen gt) = {} A
dom (ngentp gt) = (ngen gt) A
(V et. Field (edel gt et) C (fv-path-form (appcond gt))) A
(V et. Field (egen gt et) C ((fv-path-form (appcond gt)) — (ndel gt)) U (ngen gt))
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3.4 Applying Graph Transformations

We now come to the application of a graph transformation to a source graph at a
particular position. In graph rewriting, matching a pattern graph to a source graph
(and thus determining the application position) is traditionally achieved with the
aid of a graph morphism. We adopt the same terminology and define

types graphmorph = (nat = nat option)

with the understanding that the node references occurring in a graph transfor-
mation rule are mapped to the nodes in a source graph. For the “garbage collection”
example, such a situation is depicted in Figure 2.

G(n)

R v

SN e L

Fig. 2. Application of a graph morphism in a graph

We now have to spell out in detail how the target graph is composed, provided
we apply a graph transformation gt to a graph gr using a morphism gm. Quite
simply, the nodes to be deleted are just the ones in the image of the morphism
under the ndel-set.

It is more difficult to express which nodes are generated. The choice could be,
non-deterministically, any node set having the same cardinality as the ngen-set and
having no nodes in common with the nodes of the source graph. We have adopted
a deterministic solution: The nodes freshly allocated are numbered m + 1 through
m + k, where m is the maximal number present in the node set of graph gr and & is
the cardinality of the ngen-set. All this is hidden in the definition of gt-gen-nodes.
However, we only exploit the property that the fresh nodes do not occur in the
original graph, and that there is a bijection b between the ngen-nodes and the fresh
nodes.

The latter property is needed for determining the type of the generated nodes.
How do we compute it, for a fresh node n? We map n back into the graph transfor-
mation g¢, where we can look up its type. Thus, roughly, the type of n is (ngentp
gt) (b~ (n)).

The morphism on nodes induces a morphism on edges. From the edel- and egen-
sets, we can thus determine the edges in the source graph which are candidates for
deletion and for insertion. We want to avoid dangling edges that result when nodes
are requested to be deleted, but not their adjacent edges. Therefore, the edges that
survive are those whose nodes are among the nodes of the target graph. A similar
restriction applies to the typing of the target nodes.

With these explanations, the exact definition should be understandable:

apply-graphtrans ::
g(’nt, ‘et) graphtrans, graphmorph, ('nt, 'et) graph] = ('nt, 'et) graph
apply-graphtrans gt gm gr ==
let del-nodes = ran (gm | (ndel gt)) in
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let gen-nodes = gt-gen-nodes gr gt in

let morph-gen = separ-map (ngen gt) (nodes gr) in

let morph-c = gm ++ morph-gen in

let nds = ((nodes gr) — del-nodes) U gen-nodes in

let del-edges = (X et. (induced-emorph gm) ¢ (edel gt et)) in

let gen-edges = (X et. (induced-emorph morph-c) * (egen gt et)) in

let tp-ngen = ((ngentp gt) om (inv-m morph-gen)) in

( nodes = nds,
edges = X et. (restrict-rel ((edges gr et — del-edges et) U gen-edges et) nds),
nodetp = (restrict-map ((nodetp gr) ++ tp-ngen) nds)

D

In the above, f ¢ S is the image of set S under function f, and m |* S restricts
map m to S. In m1 ++ m2, map m2 overrides ml1, and o, is the composition of
maps.

3.5  Applicability of Graph Transformations

What we have called “graph morphisms” in Section 3.4 is essential for determining
whether a transformation is applicable, and if yes, where to apply it. It should
be emphasised again that “graph morphism” is a slight misnomer, because we do
not map graphs into graphs, as in traditional graph rewriting. Rather, we want to
verify that the applicability condition of a transformation rule is true.
The following predicate states that a graph morphism gm satisfies a path formula
pfs in a graph grt:
applicable-gm :: [graphmorph, ('nt, 'et) path-form, ('nt, 'et) graph] = bool
applicable-gm gm pfs grt ==
(dom gm = fu-path-form pfs) A (ran gm C nodes grt) A
path-form-interp (the o gm) grt pfs
The domain of the graph morphism has to be the set of free variables of the
path formula, and its range has to be a subset of the nodes of the graph. Most
importantly, the path formula has to be satisfied in the graph when interpreting its
free variables by the graph morphism in the given graph. (the is the left inverse of
Some, thus the (Some z) = ).
In most of our reasoning, we want to abstract away from particular graph mor-
phisms and just say that a transformation is applicable in a graph:

applicable-transfo :: [('nt, 'et) graphtrans, ('nt, 'et) graph] = bool
applicable-transfo gt gr == 3 gm. applicable-gm gm (appcond gt) gr

Now, applying a graph transformation to a graph amounts to selecting an arbi-
trary graph morphism and applying it to the graph:
apply-transfo :: [('nt, 'et) graphirans, ('nt, 'et) graph] = ('nt, 'et) graph
apply-transfo gt gr ==
apply-graphtrans gt (SOME gm. (applicable-gm gm (appcond gt) gr)) gr
Here, SOME is Hilbert’s choice operator which could be replaced by a construc-
tive choice based, for example, on a node ordering.

3.6 Properties of Graph Transformations

We can now state a major result: application of well-formed graph transformations
to well-formed graphs yields again well-formed graphs:

struct-wf-gr gr A struct-wf-gt gt —> struct-wf-gr (apply-graphirans gt gm gr)

This can be construed as a generic invariant of graph transformations that need
not be reproved for each transformation rule when reasoning about graph transfor-
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mation programs (see Section 5). Note that the structural well-formedness of the
resulting graph depends on the well-formedness of the graph transformation gi, but
is valid for arbitrary graph morphisms gm.

In [SGO06], we have shown that for traditional graph rewriting, we can similarly
ensure preservation of well-typing. In our current setting, we can express more
general typing properties than those examined in [SG06], for example cardinal-
ity constraints, so that “typing” in full generality becomes undecidable. We are
currently exploring fragments of our path logic that permit sufficiently interesting
typing properties to expressed and preservation of typing to be proved.

4 Correspondence with Graph Rewriting

In the following, we will argue that transformations expressible in traditional graph
rewriting approaches can be coded in our system. It is therefore possible to “com-
pile” traditional graph rewriting rules to expressions involving our path formulae.
It is then possible to use the techniques described in Section 5 as a verification
backend.

In the rules of the AGG system [Tae03], for example, there are positive and
negative applicability conditions, and each such condition is a graph that has to
occur, respectively must not occur, in the graph where the rule is applied. As seen
in Section 2, we can code positively occurring graphs by a conjunction of node set
and path constraints, more precisely

¢ a node set constraint T'(n) for every node n of type T in the graph

e a path constraint n —— n' for each edge e in the graph.

As mentioned before, we do not allow multiple edges of the same edge type between
a pair of nodes. We do not see that as a major drawback — if necessary, edges can
be “reified” by introducing a node representing the edge.

For negative applicability conditions, we proceed in an analogous manner, with
the difference that the nodes of the graph are asserted not to exist. Thus, for
an edge e occurring in a negative applicability graph, we have a path formula
-Inn'n - 0.

The GREAT language [AKK T05] includes, among others, cardinality constraints.
It is thus possible to specify that a node n must (or must not) have k outgoing
e-edges. Cardinality constraints are not present as primitive constructs in our lan-
guage, but they can be coded by a schema like

Cr(n)=3z1...0p. n —= 1 A...n —= xp Adistinct(xy, ... zp)

where distinct(xy,...xy) is the conjunction —(z; = x;), for i,5 € {1,...,k},i # j.

The fact that the graph morphisms between a pattern and a source graph is
injective is usually an external notion in traditional graph rewriting. In a similar
spirit as the above formula, we can internalise this notion and express that the
nodes a rule is applied to are distinct.
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5 Reasoning about Graph Transformations

As mentioned in Section 2, it is not sufficient to apply a transformation rule once.
Rather, one has to apply a rule repeatedly, or several rules have to be applied
in a specific order. Most graph rewriting tools permit to iterate rule application,
often by dividing the tool set into “layers”. The need for exerting finer control on
graph transformations has been recognised, among others, by the developers of the
GREAT language, who develop a graphical language including conditional and loop
constructs [AKK105].

We are currently developing a simple language for writing graph transformation
programs and reasoning about them. The language is not sufficiently polished
to present details, so we just give a sketch and describe how we might treat the
“marking” example of Section 2.

The language is composed of statements stmi, among which we only mention
Do and Loop. An operational semantics describes how a state is modified by these
constructs. We distinguish between success and failure states. In our case, a “state”
is just a graph with a “success” or “failure” tag. The meaning of the mentioned
constructs is then:

e Do b f checks whether condition b is satisfied in the current state s. If this is
the case, function f is applied to s to produce a success state s’. Otherwise, s is
returned as a failure state.

e Loop c applies statement ¢ indefinitely often, until winding up in a failure state,
which is the result of the loop.

Let us introduce the following abbreviation:

App = ('nt, 'et) graphtrans = ('nt, 'et) graph stmt
App gt == Do (X s. applicable-transfo gt (outcome-val s))
(X s. apply-transfo gt (outcome-val s))

Here, outcome-val discards the success / failure tag of a state. Consequently,
App applies a graph transformation, if possible, and returns the current state as
failure state otherwise.

The marking phase of the introductory example can now be written as the
program Loop (App mark), where we use the definition mark of Section 3.3. The
entire graph duplication transformation consists of a sequence of such loops, each
with a different rule.

The language comes equipped with a Hoare-style program logic. We write W F
{P} ¢ {Q} to express that statement ¢ establishes the postcondition @ provided
the precondition P and some invariant well-formedness conditions W hold. W
is typically the predicate struct-wf-gr that we have shown to be invariant under
application of graph transformations in Section 3.6. Furthermore, the statement ¢
usually contains annotations corresponding to loop invariants.

Suppose we want to show, for our example program, that all nodes of type Node
are correctly marked, i.e. have exactly one incoming Or edge, provided that in the
outset, these nodes had zero or one incoming Or edges. Let us first define nset as
the set of nodes in a graph having a given node type:

nset :: [('nt, 'et) graph, 'nt] = nat set
nset gr nt == {n € nodes gr. (nodetp gr n) = Some nt}
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We can now state the precondition:

VzEnset gr Node. card ((edges gr Or)~! “ {z}) < 1

(here, R “* S is the image of a set S under a relation R, and card the cardinality
of a set). The postcondition is similar, with the inequality replaced by an equality.

The verification condition generator leaves us essentially with two goals: showing
that the loop invariant is preserved if the rule mark is applicable, and showing that
the postcondition is satisfied if the rule is not applicable. We just look at the latter
case.

So assume that — applicable-transfo mark gr. According to the definition of
applicable-transfo, this is equivalent to ¥V gm. — applicable-gm gm (appcond mark)
gr, which contains an annoying second-order quantifier over a graph morphism gm.

However, when looking at the definition of applicable-gm, we realise that the
domain of gm is finite - it is just the set of free variables of the application condition
of mark. We now apply repeatedly the following lemma:

lemma dom-reduce-insert:
(dom gm' = insert a A) =
(3 bgm'. gm' = gm'(a—b) A gm’' a = Some b A dom gm'' = A)
which gradually reduces the domain of the morphism gm’and instead introduces
a first-order quantifier b, so that we are eventually left with the hypothesis

Vn.n € nodes gr — nodetp gr n = Some Node
— (3 z. nodetp gr x = Some Orig A (z, n) € edges gr Or)

which naturally describes the non-applicability of the rule and eventually permits
to prove the required cardinality property.

6 Conclusions

In this paper, we have presented first steps towards the verification, in an interactive
proof assistant, of structural properties established by graph rewriting systems. At
the same time, the path formulae we have introduced give an alternative view on
applicability conditions for graph rewriting rules, that may profitably be used in
graph rewriting systems.

Our path formulae are very expressive, which has the downside of leading, in
general, to undecidable verification problems. As we want to reduce the amount of
human proof effort as much as possible, we intend to address this topic in future
work, by developing specialized analyses for fragments of our logic. In fact, our path
formulae resemble path expressions used in shape analysis for pointer programs
[YRST06,KS93], other subsets have been identified in the context of description
logics [GMO05]. A detailed comparison of these approaches still has to be done.

Acknowledgement

This work has been strongly influenced by suggestions from Jean-Paul Bodeveix
and Mamoun Filali and discussions with Louis Féraud, Ralph Matthes, Marc Pan-
tel, Maxime Rebout and Sergei Soloviev. Mathieu Giorgino has elaborated several
example transformations.

123



STRECKER

References

[Agr04] Aditya Agrawal. A Formal Graph-Transformation Based Language for Model-to-Model
Transformations. PhD thesis, Vanderbilt University, August 2004.

[AKK*05] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and A. Vizhanyo. The design of a language
for model transformations. Journal of Software and System Modeling, 2005.

[Bar03] Erik Barendsen. Term Rewriting Systems, chapter Term Graph Rewriting. Cambridge
University Press, 2003.

[BBDVO03] Jean Bézivin, Erwan Breton, Grégoire Dupé, and Patrick Valduriez. The ATL Transformation-
based Model Management Framwork. Technical report, IRIN, September 2003.

aolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara Konig, and Vitali

BCE*05] Paolo Baldan, And C dini, Javier E Tobias Heindel, Barb Koni d Vitali
Kozioura. Verifying red-black trees. In Proc. of COSMICAH ’05, 2005. Proceedings available
as report RR-05-04 (Queen Mary, University of London).

[CMR196] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Loewe. Algebraic approaches
to graph transformation, part I: Basic concepts and double pushout approach. Technical Report
TR-96-17, Dipartimento di Informatica, March 21 1996.

[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 193-242. Elsevier, 1990.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation. Indag. Math., 34:381-392, 1972.

[EHK*97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Léwe, Leila Ribeiro, Annika Wagner,
and Andrea Corradini. Algebraic approaches to graph transformation - part II: Single
pushout approach and comparison with double pushout approach. In Grzegorz Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations, pages 247-312. World Scientific, 1997.

[FM97] P. Fradet and D. Le Métayer. Shape types. In Proc. of Principles of Programming Languages,
Paris, France, Jan. 1997. ACM Press.

[GMO05] Lilia Georgieva and Patrick Maier. Description logics for shape analysis. In Bernhard K.
Aichernig and Bernhard Beckert, editors, Third IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2005), pages 321-330, Koblenz, Germany, September
2005. IEEE Computer Society, IEEE.

[KS93] Nils Klarlund and Michael I. Schwartzbach. Graph types. In POPL, pages 196-205, 1993.

[KS06] A. Koénigs and A. Schiirr. Tool Integration with Triple Graph Grammars - A Survey. In
R. Heckel, editor, Proceedings of the SegraVis School on Foundations of Visual Modelling
Techniques, volume 148 of Electronic Notes in Theoretical Computer Science, pages 113-150,
Amsterdam, 2006. Elsevier Science Publ.

[MFV*05] Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet, Frédéric
Fondement, Philippe Studer, and Jean-Marc Jézéquel. On executable meta-languages applied
to model transformations. In Proc. Model Transformations In Practice Workshop, 2005.

[NPWO02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer Verlag, 2002.

[Plu99] Detlef Plump. Handbook of Graph Grammars and Computing by Graph Transformation, volume
2: Applications, Languages and Tools, chapter Term Graph Rewriting. World Scientific, 1999.

[RD06] Arend Rensink and Dino Distefano. Abstract graph transformation. FElectr. Notes Theor.
Comput. Sci, 157(1):39-59, 2006.

[Ren03] Arend Rensink. Towards model checking graph grammars. In Proc. Workshop on Automated
Verification of Critical Systems (AVoCS), 2003.

[SG06] Martin Strecker and Mathieu Giorgino. Towards a formalisation of graph transformations in
proof assistants. In Proc. AVOCS’06, September 2006.

[Tae03] Gabriele Taentzer. AGG: A graph transformation environment for system modeling and
validation. In Proc. Tool Ezihibition at Formal Methods 2003, September 2003.

[Var04] Déniel Varr6. Automated formal verification of visual modeling languages by model checking.
Software and System Modeling, 3(2):85-113, 2004.

reta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine Meyer, an med Bouajjani.

YRS1T06] G Yorsh, Al der Moshe Rabinovich, Mooly Sagiv, Antoine M d Ahmed Bouajjani
A logic of reachable patterns in linked data-structures. In Luca Aceto and Anna Ingélfsdottir,
editors, FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages 94-110. Springer,
2006.

124



