
Electronic Notes in Theoretical Computer Science

Computing with terms and graphs

TERMGRAPH 2007

Preliminary Proceedings

Braga, Portugal

31 March 2007

Guest Editors:

Ian Mackie and Detlef Plump

Contents

Preface v

E. Balland and P. Brauner
Term-graph Rewriting in TOM Using Relative Positions 1

D. Bechet and S. Lippi
Hard Combinators . 16

D. Bechet and S. Lippi
Universal Boolean Systems . 33

G. Bonfante and Y. Guiraud
Intensional Properties of Polygraphs . 43

C. Fouquere and V. Mogbil
Rewritings for Polarized Multiplicative and Exponential Proof Struc-
tures . 54

H. Geuvers and I. Loeb
Deduction Graphs with Universal Quantification . 66

D. Grohmann and M. Miculan
An Algebra for Directed Bigraphs . 80

S. Sato and A. Hassan
Interaction Nets with Nested Pattern Matching . 93

F.-R. Sinot
Sub-lambda-calculi, classified . 105

M. Strecker
Modeling and Verifying Graph Transformations in Proof Assistants . . . 112

ii

Preface

The Fourth International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2007) was held in Braga, on Saturday 31 March 2007, as a
satellite event of the 10th European Joint Conference on Theory and Prac-
tice of Software (ETAPS 2007). The first TERMGRAPH workshop took place
in Barcelona, in 2002, as a satellite event of the International Conference on
Graph Transformation (ICGT), the second TERMGRAPH workshop took place
in Rome 2004, also as a satellite event of ICGT, and the third in Vienna, as a
satellite event of ETAPS 2006.

The advantage of computing with graphs rather than terms is that com-
mon subexpressions can be shared, improving the efficiency of computations
in space and time. Sharing is ubiquitous in implementations of programming
languages: many functional, logic, object-oriented and concurrent calculi are
implemented using term graphs. Research in term and graph rewriting ranges
from theoretical questions to practical implementation issues. Different research
areas include: the modelling of first- and higher-order term rewriting by (acyclic
or cyclic) graph rewriting, the use of graphical frameworks such as interaction
nets and sharing graphs (optimal reduction), rewrite calculi for the semantics
and analysis of functional programs, graph reduction implementations of pro-
gramming languages, graphical calculi modelling concurrent and mobile com-
putations, object-oriented systems, graphs as a model of biological or chemical
abstract machines, and automated reasoning and symbolic computation systems
working on shared structures.

The aim of this workshop is to bring together researchers working in these
different domains and to foster their interaction, to provide a forum for present-
ing new ideas and work in progress, and to enable newcomers to learn about
current activities in term graph rewriting.

Topics of interest include all aspects of term graphs and sharing of com-
mon subexpressions in rewriting, programming, automated reasoning and sym-
bolic computation. This includes (but is not limited to): term rewriting, graph
transformation, programming languages, models of computation, graph-based
languages, semantics and implementation of programming languages, compiler
construction, pattern recognition, databases, bioinformatics, and system de-
scriptions.

For TERMGRAPH 2007, the Programme Committee selected 10 papers for
inclusion in these proceedings, covering a wide range of the topics.

The Programme Committee consisted of:

• Zena Ariola, University of Oregon, USA

• Andrea Corradini, University of Pisa, Italy

• Maribel Fernández, King’s College London, UK

• Bernhard Gramlich, Vienna University of Technology, Austria

• Annegret Habel, University of Oldenburg, Germany

iii

• Claude Kirchner, INRIA & LORIA, Nancy, France

• Jean-Jacques Lévy, INRIA, Rocquencourt, France

• Ian Mackie, King’s College London & École Polytechnique (Co-Chair)

• Aart Middeldorp, University of Innsbruck, Austria

• Ugo Montanari, University of Pisa, Italy

• Jorge Sousa Pinto, University of Minho, Braga, Portugal

• Detlef Plump, University of York, UK (Co-Chair)

• Arend Rensink, University of Twente, The Netherlands

We would like to thank all those who contributed to TERMGRAPH 2007.
We are grateful to the Programme Committee members for their careful and
efficient work in reviewing the submitted papers and selecting the workshop
programme.

Ian Mackie and Detlef Plump

1 March 2007

iv

TERMGRAPH 2007

Term-graph rewriting in Tom
using relative positions

Emilie Balland and Paul Brauner

UHP & LORIA, INPL & LORIA
Campus Scientifique, BP 239,

54506 Vandœuvre-lès-Nancy Cedex France

Abstract

In this paper, we present the implementation in Tom of a de Bruijn indices gen-
eralization allowing the representation of term-graphs over an algebraic signature.
By adding pattern matching and traversal controls to Java, Tom is a well-suited
environment for defining program transformations or analyses. As some analyses,
e.g. based on control flow, require graph-like structures, the use of this formalism
is a natural way of expressing them by graph rewriting.

Key words: term-graph,rewriting,strategic programming

1 Introduction

Program transformation and graph rewriting are strongly related [10]. Indeed,
although the structure of a program may be represented by a tree, informa-
tions about its execution like data dependencies or control flow are naturally
expressed by data-structures inherently using cycles or subterms sharing, in
other words by graphs. More precisely, since these graphs are oriented and la-
belled over an algebraic signature, such transformations are described within
the framework of term-graphs [13]. There exists several definitions of term
graph rewriting, category-theory oriented [7,11], equationally oriented [2] or
implementation-oriented [3].

Since 2001, the Protheo team has been developing the Tom system [12],
whose main originality is to be built on top of an existing language Java. Tom
provides pattern matching facilities to inspect objects and retrieve values.
Moreover, the rewriting steps can be controlled using a powerful strategy
language. The main application of the language being program transformation
and code analysis, we were interested in extending the Tom language for
supporting term-graph transformations.

In this paper, we introduce the notion of relative position inspired from the
de Bruijn indices as a way to express paths between two subterms. Then we

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Balland and Brauner

present an implementation of term-graphs based on this formalism. As Tom
provides rewriting strategies, integrating such structures in the language offers
strategic graph rewriting for free. After introducing the notion of relative
positions, we will explain how the language can be extended to offer facilities
for strategic graph rewriting. Finally, we will illustrate the use of this extension
by an implementation of lambda-calculus normalization.

2 Term-graph representation

Our goal is to represent term-graphs on top of the term rewriting theory
with the fewest possible modifications to this formalism to take advantage of
the existing results (confluence, termination) and tools, namely Tom. The
main idea of this paper is to raise the notion of position to the level of first-
order terms by extending algebraic signatures with an infinite set of constants
representing positions. This allows for the description of terms containing
some “pointers” to subterms of themselves. As an example, the term s(a, 1)
defined over such a signature denotes a term whose second child references the
first-one.

The main issue of this representation is that it is context-sensitive. For
instance, the position 1.1 references the subterm a in f(s(a, 1.1)), but s(a, 1.1)
in f(f(s(a, 1.1))). This raises the idea of relative positions describing paths
inside a term to the referenced subterms. The previous example would then
be written f(s(a,−1.1)), where −1 indicates one backward step inside the
term. This can be seen as a generalization of de Bruijn indices extended to
the count of all function symbols, not only abstractions.

In this section, we define more formally this notion of relative position
and terms with references before we present an implementation aimed to be
used by Tom. We finally discuss the relation between this formalism and
term-graphs as well as the associated technical solution.

2.1 Terms with references

As usual, a position is a finite sequence of natural numbers. The subterm u
of a term t at position ω is denoted t|ω, where ω describes the path from the
root of t to the root of u. To emphasize the difference with relative positions,
we will sometimes refer to positions as absolute positions.

Let us first define relative positions along with their meaning.

Definition 2.1 (Relative position) The set Rpos of relative positions is
the monoid (Z∗, .) with neutral element Λ where Z∗ = Z \ {0}.
We note n, p the elements of Z∗ and ωr, ω′

r, . . . the elements of Rpos.

Definition 2.2 (Referenced subterm) Given an absolute position ω and
a relative position ωr, the absolute position accessed by ωr from ω is written
pos(ω, ωr) and is defined as follows:

2

Balland and Brauner

• if ωr = Λ, then pos(ω, ωr) = ω

• else, there exists p ∈ Z∗ and ω′
r ∈ Rpos such that ωr = p.ω′

r and
· if p > 0, then pos(ω, ωr) = pos(ω.p, ω′

r)
· if p < 0 and if there exists ω′ and ω′′ such that ω = ω′.ω′′ and |ω′′| = −p,

then pos(ω, ωr) = pos(ω′, ω′
r)

It is undefined everywhere else.

We note t|ω,ωr the term t|pos(ω,ωr) for every ω and ωr such that pos(ω, ωr)
and t|pos(ω,ωr) are defined. We name it the subterm of t referenced by ωr from ω.

Intuitively, ωr describes a path back and forth inside t from ω to t|ω,ωr . For
example, the relative positions −1.1 and −2.1.2.−1.1 reference the same
subterm a of f(s(a, b)) from the position 1.2.

We can now define the notion of first-order terms with references. It only
consists in extending an algebraic signature with an infinite set of constants
denoting relative positions.

Definition 2.3 (Term with references) For every set of first-order terms
T (F ,X), the corresponding set of terms with references Tref (F ,X) is the set
T (F ∪Rpos,X) where elements of Rpos have arity 0.

As an example, f(s(a,−1.1)) is a term with references of Tref ({f, s, a}, ∅).
By abuse of notation, we will say that “−1.1 references a in f(s(a,−1.1))”,
without specifying it occurs at position 1.2.

Problems will inevitably occur when considering undefined relative posi-
tions. We define therefore validity as follows.

Definition 2.4 (Term with references validity) A term with references
t ∈ Tref (F ,X) is valid if for every leaf ωr = t|ω such that ωr ∈ Rpos, t|ω,ωr is
defined and is not in Rpos.

Notice that we forbid relative positions referencing relative positions.

2.2 Implementation of terms with references

Let us now see how this formalism can be transposed to the Tom language.
One characteristic of Tom is its data-structure independence. A term can be
represented by any Java object as long as the user provides a mapping to see
these objects as trees. For easier development, it comes up with a language
called Gom [14] which automatically generates from a signature the Java
implementation and the mapping. The resulting implementation is efficient
in space and time (constant time terms equality test) because of maximal
subterm sharing. Readers must pay attention to the difference between the
maximal sharing and the notion of sharing in term-graphs. In our case, the
maximal sharing is only at implementation level and does not lead to sharing
at the term level. A Gom signature contains sorts and their constructors.
For example, the signature below defines two sorts A and B along with their

3

Balland and Brauner

constructors.

A = a() B = g(A)
| f(A)
| s(A,A)

With this signature, we can construct the terms a(), f(a()) or g(f(a()))
for instance. Our goal is to generate an extended signature for terms with
references from an initial Gom one. To achieve this, for every sort T of a Gom
module, we generate a new constructor of rank posT(int*). The notation *
is the same as in [4, Section 2.1.6] and can be seen as a family of constructors
with arities in [0,∞[. The previous example is extended in this way:

A = a() B = g(A)
| f(A) | posB(int*)
| s(A,A)
| posA(int*)

As an example, we can now build the extended term s(−1.2.1, f(a)) with the
following syntax: s(posA(-1,2,1),f(a())). Then posA(-1,2,1) references
a() in the term s(posA(-1,2,1),f(a())).

This type of terms with references using explicit relative positions consti-
tutes a first extension of a Gom signature. In order to ensure type-preservation
and reference correctness, a second representation level consists in expressing
references with the help of labels. This notion of labelling can be seen as
an implementation of the addressed terms presented in [5]. We have added
new constructors to facilitate the use of labels and functions to transform a
term with labels into the low-level representation. For every sort T, we gen-
erate two constructors. The constructor labT(String,T) enables the user to
label a term with a string and refT(String) to reference a labelled term.
Thus the term s(refA("l"),f(labA("l",a()))) corresponds to the low-
level term s(posA(-1,2,1),f(a())). This notion of labels can be seen as
syntactic sugar for hiding positions to users in order to avoid bad manipula-
tions. Thereby, the constructors posT should be private so that users can only
construct terms with references by label usage. We provide functions which
generate the corresponding low-level terms after verifying that each refT cor-
responds to a labT of identical sort. This transformation is itself described
using strategic rewriting introduced in section 4.

2.3 Correspondence with term-graphs

Let us see now how a representation of cyclic term-graphs (in the sense of [2]
for instance) can be obtained from the terms with references introduced above.
For example, the term-graph rooted by s whose two children correspond to the
shared subterm a may be represented by s(a,−1.1). It may also be represented
by s(−1.2, a) though, so we need to define canonical forms. Moreover, we
noticed that several relative positions may reference the same subterm from a

4

Balland and Brauner

given position. Hence, we define canonical relative positions.

Definition 2.5 (Canonical relative position) Let ω1, ω2 be two abso-
lute positions, the canonical relative position cpos(ω1, ω2) from ω1 to
ω2 is the smallest relative position with respect to the length such that
pos(ω1, cpos(ω1, ω2)) = ω2.

Let us remark that cpos(ω1, ω2) = q.ω′ where ω′ ∈ (N∗, .) and q ∈ Z∗∪{Λ}.
We can now define the canonical form of terms with references using an order
on absolute positions.

Definition 2.6 (Canonical term with references) Let ω1 = n1.ω
′
1 or Λ

and ω2 = n2.ω
′
2 or Λ be two different absolute positions,

ω1 <Ω ω2 ⇔


ω1 = Λ

or n1 < n2

or n1 = n2 and ω′
1 <Ω ω′

2

A term t with references is then canonical if and only if t is valid and for every
leaf ωr = t|ω such that ωr ∈ Rpos, ωr is canonical and pos(ω, ωr) <Ω ω.

Typically, contrary to s(−1.2, a), the term s(a,−1.1) is a canonical represen-
tation of a term-graph.

The formalism presented all along this section has been implemented
through a plugin for Gom which generates an extended signature with new
constructors for positions and construction functions which offer different
levels of abstractions (from terms with explicit positions to term-graphs
with labels). As illustrated by the Figure 1, a user may provide a labelled
representation which is not a canonical form and use the provided con-
struction function to normalize it. Whatever the favored level of the user,

s

s s

f f

a a

s

s s

f

f

a

a

refArefA

labA

labA

”l1”

”l1””l2””l2”

Fig. 1. An example of term-graph and its representation as a labelled term.

the in-memory representation is always based on explicit relative positions.
Moreover, due to Gom design and in particular to the maximal sharing,
the efficiency in time and space is ensured. For example, the term-graph

5

Balland and Brauner

presented Figure 1 is automatically translated during the construction into
the low-level term with positions depicted in Figure 2. The principle of
maximal sharing is also illustrated by a schematic representation of the heap.

s

s s

f f

a a

posAposA

−2−1 1

s

s s

f

a
posA posA

-1 1
-2

Fig. 2. Generation of relative positions from the labelled representation and maxi-
mal subterm sharing in memory.

After defining terms with references rewriting, we will exhibit in the next
two sections how the Tom language offers strategic rewriting of these struc-
tures.

3 Term-graph matching

The originality of the previous approach is that pattern matching on terms
with references built upon T (F ,X) is simply defined as pattern matching
on terms of Tref (F ,X). There is therefore no need to extend the notion
of rewriting, which allows us to reuse existing results and rewriting tools.
However, the questions raised by this formalism are situated at another level:
we would like the rewrite system to rewrite only valid terms. Giving some
non-trivial criterion on rewrite rules implying this property remains an open
question for the moment. The next sections of this paper therefore focus on
technical aspects of the pattern matching problem implementation.

After introducing the Tom language, we discuss various presentations of
graph with references rewriting in this system. Although we cannot statically
check that patterns ensure the validity of matched terms, we also propose
several solutions to check this property at runtime.

3.1 Tom pattern matching

The first mechanism offered by the Tom language is pattern matching on al-
gebraic terms. This feature is similar to the constructs proposed by functional
languages like OCaml or Haskell. It is enabled by the %match keyword which
allows us to match a subject against some pattern and to get the values of the
pattern variables into Java ones:

A term = ‘s(f(a()),a());

6

Balland and Brauner

%match(term) {

s(x,y) -> {

System.out.println(

"First child: " + ‘x + ", second child: " + ‘y

);

return ‘f(x);

}

}

A subject is then any Java object which is an instance of a class whose
description has been provided to Tom via a mapping. This mapping indicates
to the Tom compiler how to match some class against a pattern, and how
to create new algebraic terms implemented by this class via the ‘ construct.
Here we are using the classes generated by Gom along with their mappings.
Tom also supports associative matching, a.k.a. list matching, as well as anti-
patterns [9] and non-linear matching.

Let us elaborate on the mapping mechanism. It provides an algebraic view
of some Java object (e.g. seeing integers as Peano natural numbers, or seeing
an XML tree as a term). It is divided into two parts: the destructive part and
the constructive one. The destructive part is used by the matching algorithm
and its main function is to describe how to query a term about its head symbol
and how to get its nth child. For instance, the mapping between integers and
Peano naturals would be similar to the following schematic code:

is_zero(n) { n == 0 }

is_successor(n) { n > 0 }

get_successor_child(n) { n - 1 }

On the other hand, the constructive part is used by the compiler to build an
algebraic term. It usually consists in calling the constructor of the Java class
implementing the term. Although our goal is to work as much as possible
on top of classes and mappings generated by Gom, we will punctually adapt
some mapping to our needs.

3.2 Matching terms with references

Given these language constructs and the terms described in Section 2.2, there
are many ways to express matching against patterns with references. As
for term construction, patterns can be expressed at low-level using directly
positions or by a syntax based on labelling. In each case, it refers to a
stated subterm whose position is well-known. To compare two references by
value instead of references, we will introduce a deref operator in patterns
implemented using Tom mappings.

The simplest way to handle Gom terms with references is to consider the
extended signature and perform some standard pattern-matching on it. Since

7

Balland and Brauner

the posT(int*) constructors generate matchable terms, it is possible to write
patterns where relative positions are explicitly given. As an example, the
term represented Figure 3 matches against the pattern s(a(),pos(-1,1)).
Notice that this type of pattern denotes exactly the structure of the term: e.g.
s(pos(-1,2),a()) would not match the same term. This method allows us
to match against any position, even those pointing to an upper term as shown
Figure 4. This may still be relevant in case of a procedure carrying some

s

a

Fig. 3. s(a(),pos(-1,1))

f

Fig. 4. f(pos(-n,...))

contextual information or fetching the position to perform some computation
later. It may also be useful to compare two positions without knowing the
value of the subterms they are referencing. Figure 5 illustrates this situation.
Notice however that this is only possible if the two variables have the same
height in the term, as we are comparing relative positions.

s

Fig. 5. s(x,x)

f

Fig. 6. f(pos(-n,...))

This first simple manner of matching graphs with references presents two
issues: the main one, depicted by Figure 6, is that a relative position may be
undefined. These patterns should therefore be considered as a kind of unsafe
assembly language for matching terms with references. The second one is
that the explicit notation of positions is not mandatory and may be easily
avoided with some syntactic sugar.

Thereby we propose to slightly modify the Tom compiler to address them.
The first change consists in integrating labels capturing and denoting positions
of subterms into the patterns syntax in order to avoid any explicit position
matching. As an example, the term represented in Figure 3 would match
against the pattern s(x:a(),x). The translation of this kind of patterns to
the former one is trivial: each occurrence of a label lab is replaced by the
relative position from its position to the position of the subterm labelled by
lab.

8

Balland and Brauner

The second modification aims at reinforcing the patterns safety. As
explained in section 2.2, we do not want the user to be able to recover
a position by matching the term of figure 3 against s(_,x) for instance.
This can be achieved by inhibiting the generation of mappings for position
constructors, so that the matching algorithm fails on such patterns. Another
less restrictive way of dealing with the undefined relative positions problem
would be to have the patterns similar to s(_,x) match only valid terms.
This could be achieved by checking at runtime that every relative position in
x references an accessible term. This is easily done with the help of strategies
presented in section 4. In both cases, we cannot avoid some modifications of
the pattern-matching algorithm, thus of the compiler.

The two previous kinds of patterns focus on the positions themselves as
matchable objects. Another approach would be to have the patterns express
constraints about the value of the referenced subterms. The mapping mecha-
nism presented in Section 3.1 offers the necessary features to achieve this via
the writing of an ad hoc destructor. We wrote this deref destructor which
acts like a proxy between the pattern matching algorithm and the destructor
of the value referenced by a position. As an example, the term represented by

s

sa

f

s

sa

a

f

Fig. 7. deref(a()) ambiguity

Figure 3 matches against the pattern s(a(),deref(a())). It is important
to note that the patterns are now an abstraction of the term so we do not
match the graph structure anymore. For instance, the two terms of Figure 7
match against the same pattern s(a,s(f(deref(a())),_)). In particular, it
is not possible anymore to use non-linear pattern matching in order to check
that two positions are referencing the same sub-term, as depicted by Figure 8
which shows the ambiguity of the s(s(deref(x),deref(x)),_) pattern.
Again, matching terms with references in this way is not safe. Indeed the
subject may contain positions referencing terms above its root. However
this time, checking the validity of a term does not require any change to the
compiler since the test can be transfered to the destructor. The latter aborts
the matching process by returning false if accessing the pointed term raises
an exception.

9

Balland and Brauner

s

s

s

ss

Fig. 8. deref(x),deref(x) ambiguity

3.3 Matching term-graphs

Contrary to Gom terms with references, the usual term-graph definition does
not differentiate two types of children. Therefore, it may be convenient to have
the patterns s(x:a(),x) and s(x,x:a()) match either s(a(),pos(-1,1)) or
s(pos(-1,2),a()). The normal form mentioned in Section 2.2 enables such
a feature: it is sufficient to maintain normalization of both terms at runtime
and patterns at compile time to ensure this behavior. It requires some minor
changes of the Tom compiler though.

As recalled in Section 2.2, one main application of term-graphs is the
representation of subterms sharing in the purpose of gaining space and com-
putation time. However, this structure (the sharing) does not reflect the
structure of the represented term (typically a λ-term) and it is therefore de-
sirable to manipulate it modulo this encoding. The basic idea is to interweave
deref constructors inside the patterns, so that s(a(),a()) is translated into
deref(s(deref(a()),deref(a()))) and thus matches the graph of figure 3.
It only requires to confer some lazy behavior to the deref destructor, which
should act as if not existing in case of a direct subterm (not a position).

Even if the classical [3] representation of term-graphs by a labelled graph
is similar to ours, the conditions on rewrite rules are more restrictive (the left-
hand side of a rule is limited to trees). For now, term-graph rewriting in Tom
is expressed by syntactic term rewriting. Contrary to [3], there is no garbage
collection phase and referenced subterms can disappear or change, leading to
invalid terms. One solution would be to integrate this garbage collection phase
in the Tom matching. An other attractive approach would be to implement
the formalism presented in [6] where the right-hand side of the rewriting rules
consists in a set of actions on the pointers.

4 Strategic programming with term-graphs

Tom provides a powerful strategy language inspired by ELAN and Stratego.
The purpose of strategies is to describe how transformation rules should be
applied. In case of terms with references, the strategy language must be
extended in such a way that we can traverse them as graphs.

10

Balland and Brauner

4.1 Tom strategy language

Elementary strategies are composed of the two basic strategies Identity()

and Fail() as well as type-preserving user-defined rewrite rules specializing
their behaviour:

%strategy Eval() extends Fail() {

visit A {

s(x,a()) -> { return ‘f(x); }

s(x,y) -> { return ‘y; }

}

}

When applied to a node of sort A, a transformation is performed if one of the
patterns matches the node. Otherwise, the default Fail strategy is applied.

More complex strategies can be built on top of elementary ones, in-
volving basic combinators introduced in ELAN [8] and extended in [15]:
Sequence(s1,s2), Choice(s1,s2), All(s), One(s), etc. We can therefore
build strategies such as ‘Choice(Eval(),Identity()) which tries to apply
Eval() to the current node and returns it unchanged if Eval() failed (i.e.
none of the patterns matched the current node).

Besides, the strategy language allows the declaration of recur-
sive parametrized strategies, enabling the definition of higher-level con-
structs. For example, the fix-point operator can be expressed by
Repeat(s)

4= µx.Choice(Sequence(s,x), Identity()), where µ denotes a
recursion operator, x a variable, and s a parameter of the strategy. In Tom,
we raised the recursion operator to the object level, allowing the definition of
complex strategies in a truly algebraic manner:

Strategy Repeat(Strategy v) {

return ‘mu(MuVar("x"),

Choice(Sequence(v,MuVar("x")),Identity()));

}

Finally, Gom generates a congruence strategy _f for each constructor f

of an algebraic signature. Using the notation s[t] to express the application
of the strategy s to the term t, f(s1,...,sn)[f(c1,...,cn)] returns
f(s1[c1],...,sn[cn]) and fails if the head symbol of the subject is not
f. This allows to perform pattern matching “on the fly” during term traversal.

One noticeable property of strategic programming with Tom is that it is
possible to get the current absolute position inside the visited term during a
traversal. This allows for instance to collect in one pass the set of reduced
forms of a term for a given rewrite system. In our case, we will make use of
this feature in the next section to collect the positions of bounded variables
occurences under an abstraction.

11

Balland and Brauner

4.2 Extension of Tom strategy language

In order to traverse terms with references, we enrich the strategy language
of Tom with one new strategy combinator Ref whose semantics is defined as
follows:

Ref(s)[t] =

 s[t’] if t’ is the term referenced by t

s[t] otherwise

This new basic combinator can be used everywhere in a composed strategy.
One important characteristic of the Tom strategy language is that every com-
posed strategy is itself a term and therefore can be traversed and rewritten.
Adapting a strategy term for graphs with references consists in weaving the
Ref combinator ahead every elementary strategy inside a strategy term. For
example, Sequence(s1,s2) where s1 and s2 are elementary strategies will be
rewritten into Sequence(Ref(s1),Ref(s2)).

5 Application to the lambda-calculus

Let us see now some application of our programming framework through the
implementation of a basic λ-calculus interpreter. The graph with references
will encode variable bindings, acting as de Bruijn indices, while the strategy
language will translate the usual evaluation strategies of λ-calculus.

We work with a minimalist Gom signature:

LT = App(LT, LT)
| Abs(LT)

The chosen representation of λ-terms makes use of terms with references
by replacing variables with positions pointing to the corresponding binder.
For instance, the term λf.λx.(f x) will be encoded by the Gom term
Abs(Abs(App(posLT(-3),posLT(-2)))). This encodes a kind of de Bruijn
indices counting not only abstractions but also every node in the syntactic
tree of the λ-term.

Let us write a beta strategy wich performs one β-reduction step on a redex.
As mentioned in the previous section, it is possible to get the current position
inside a visited term during its traversal by a strategy. Thereby, knowing the
position of λ inside the visited redex (λx.f a) will allow us to find all the
occurences of x in f , i.e. relative positions pointing to λ. The beta strategy
then simply consists in four steps when applied to an application (λx.f a):

(i) collecting the position of λ;

(ii) collecting a;

(iii) replacing all the occurences of relative positions pointing to λ by a in f ;

12

Balland and Brauner

(iv) replacing the redex by the modified f .

Assuming we have a mutable structure info (a Java class here) which can
store both informations of the first and second steps, this is achieved by the
following strategy:

Strategy beta = ‘Sequence(

_App(Identity(),collectTerm(info)),

_App(

Sequence(

collectPosition(info),

_Abs(µx.Choice(substitute(info),All(x)))),
Identity()),

clean());

We can notice the presence of four user defined strategies: collectTerm,
collectPosition, substitute and clean. They respectively perform the
four steps described above. Their code is obvious and one line long, except
for the substitute strategy which has to compute the absolute position
referenced by the current term to compare it with the position of λ stored in
info. Then it performs the necessary shifts on bounded variables (relative
positions) inside a before returning it. The whole strategy itself is an overlap-
ping of congruence strategies. The µx.Choice(substitute(info),All(x))
construct means that we do not go down further inside the term if the
substitution succeeded.

We shall now apply this beta strategy on a λ-term with some evaluation
strategy until we reach a fixpoint. beta being a strategy, it can be combined
with other strategies to perform reductions. In particular, the TopDown and
Innermost strategies respectively encode call-by-name and call-by-value eval-
uation strategies modulo some fixpoint computation encoded by the provided
RepeatId strategy. They are themselve expressed using elementary strategies:

TopDown(s) = µx.Sequence(s,All(x));
Innermost(s) = µx.Sequence(AllRL(MuVar(x)),Try(Sequence(s,x)))

Where AllRL applies s to all the childs of the current node from right to
left. Substituting s by beta inside one these enables the expected evaluation
behaviour.

Let us briefly see how a typical use of term-graphs, namely sub-
terms shared evaluation, can be implemented by a slight modification
of the previous example. We now assume that many bounded vari-
ables are represented by shared subterms where “shared” is meant in
the sense of term-graphs semantics. For example, the λ-term λx.(x x)
will be represented by Abs(App(posLT(-2),posLT(-1,1))) instead of
Abs(App(posLT(-2),posLT(-2))). The previous beta strategy is then

13

Balland and Brauner

still mainly valid since this modification only affect the situations where
the second child of an application is a variable, i.e. a relative position.
Hence, changing the line _App(Identity(),collectTerm(info)) by
_App(Identity(),Ref(collectTerm(info))) suffices to adapt the strategy
to the new λ-terms representation. This modification is of course relevant in
case of a call-by-name strategy.

Finally we shall notice that termgraphs are sometime used to represent
cyclic λ-terms [1]. This raises the question of the representation of terms
cycling on an abstraction like 〈x | x = λy.(x y)〉 with our de Bruijn encoding.
Indeed, both y and x variables are then references denoting the root of the
λ-term. This is easily handled by the use of “colored” references, implemented
by two different posLT constructors: Abs(App(PosLT1(-2),PosLT2(-2))).

The discussed implementation is available in the Tom subversion
repository 1 , under the examples/termgraph path.

6 Conclusion

To the best of our knowledge, we have presented here a new way of representing
terms with references which presents strong similarities with the term-graph
formalism. Using the Tom language as a programming background, we have
discussed the various advantages and drawbacks of such an approach at differ-
ent levels: memory representation, pattern matching and strategic traversal.
We finally presented an application of this framework via the writing of a
simple λ-calculus interpreter making an heavy use of strategies.

A major part of the presented propositions has been implemented. We
are now working on the definition of a rewriting step similar to the one of [2].
Another field of investigation would be the writing of Ref strategies aborting
infinite loops appearing during the traversal of a graph with cycles. This could
be achieved by some map associating counters to visited nodes.

As shown by the last section, this model has interesting applications and
opens promising perspectives in terms of program transformation and code
analysis. Besides, the normal form described in section 2.2 makes it a solid
basis for experimenting transformations on term-graphs in a concise and ex-
pressive manner.

References

[1] Ariola, Z. M. and J. W. Klop, Cyclic lambda graph rewriting, in: Logic in
Computer Science, 1994, pp. 416–425.

1 Compilation instructions are detailed in the Tom documentation at http://tom.loria.
fr/docs.php

14

http://tom.loria.fr/docs.php
http://tom.loria.fr/docs.php

Balland and Brauner

[2] Ariola, Z. M. and J. W. Klop, Equational term graph rewriting, Fundam. Inf.
26 (1996), pp. 207–240.

[3] Barendregt, H. P., M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer
and M. Sleep, Term graph rewriting, in: PARLE Parallel Architectures and
Languages Europe, LNCS 259 (1987), pp. 141–158.

[4] Comon, H. and J.-P. Jouannaud, Les termes en logique et en programmation
(2003), master lectures at Univ. Paris Sud.
URL http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
articles/cours-tlpo.pdf

[5] Dougherty, D. J., P. Lescanne and L. Liquori, Addressed term rewriting systems:
Application to a typed object calculus, Mathematical Structures in Computer
Science 16 (2006), pp. 667–709.

[6] Echahed, R. and N. Peltier, Narrowing data-structures with pointers., in: Third
International Conference on Graph Transformations, LNCS 4178, 2006, pp.
92–106.

[7] Kennaway, R., On graph rewritings, Theoretical Computer Science 52 (1987),
pp. 37–58.

[8] Kirchner, C., H. Kirchner and M. Vittek, Designing constraint logic
programming languages using computational systems, in: F. Orejas, editor,
Proceedings of the 2nd CCL Workshop, La Escala (Spain), 1993.

[9] Kirchner, C., R. Kopetz and P. Moreau, Anti-pattern matching, in: Proceedings
of the 16th European Symposium on Programming, 2007.

[10] Lacey, D. and O. de Moor, Imperative program transformation by rewriting,
in: Proceedings of the 10th International Conference on Compiler Construction
(2001), pp. 52–68.

[11] Löwe, M., Algebraic approach to single-pushout graph transformation,
Theoretical Computer Science 109 (1993), pp. 181–224.

[12] Moreau, P.-E., C. Ringeissen and M. Vittek, A Pattern Matching Compiler
for Multiple Target Languages, in: G. Hedin, editor, Proceedings of the 12th
International Conference on Compiler Construction, LNCS 2622 (2003), pp.
61–76.

[13] Plump, D., Term graph rewriting, handbook of graph grammars and computing
by graph transformation, G. Rozenber, World Scientific Publishing, 3-61 (1999).

[14] Reilles, A., Canonical abstract syntax trees, in: Proceedings of the 6th
International Workshop on Rewriting Logic and its Applications (2006), to
appear.

[15] Visser, E. and Z.-e.-A. Benaissa, A core language for rewriting, in: C. Kirchner
and H. Kirchner, editors, Second International Workshop on Rewriting Logic
and its Applications, ENTCS 15 (1998).

15

http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/articles/cours-tlpo.pdf
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/articles/cours-tlpo.pdf

TERMGRAPH 2007

Hard
ombinatorsDenis Bé
het 1 ;2LINAUniversité de NantesNantes, Fran
eSylvain Lippi3I3SUniversité de Ni
eSophia Antipolis, Fran
eAbstra
tWe present a simple system of four symbols and seven rules that
an be used to translate a sub
lass ofgraph relabeling systems
alled hard intera
tion nets.Keywords: Intera
tion nets, asyn
hronous
ir
uits, universal ma
hines, graph rewriting1 Introdu
tionIntera
tion nets introdu
ed by Yves Lafont [3℄
an be
onsidered as a generalizationof linear logi
 multipli
ative proof nets. Synta
ti
ally they are presented as graphrewriting systems where rules are applied on pairs of nodes (
alled
ells)
onne
tedby an �a
tive edge�
alled
ut by logi
ians. Lafont presented in [4℄ a system of threesymbols and six rules
alled intera
tion
ombinators that is universal : any intera
-tion system
an be translated (in a sense that we shall detail below) into the systemof the
ombinators. Intera
tion nets have been su

essfully used to implement var-ious redu
tion strategies for the �-
al
ulus ([7℄ and [5℄) and several interpreters (inparti
ular a parallel one by [8℄ and a graphi
al one by [6℄) for intera
tion nets havebeen proposed. More re
ently, non-deterministi
 extensions have been studied.In this paper, we shall fo
us on a restri
tion
alled hard intera
tion nets wherethe geometry of the net is invariant during redu
tion and propose a universal sys-tem (
alled hard
ombinators) for su
h systems. The translation of an arbitrary1 Thanks to the referees and to Yves Lafont for their useful advises.2 Email: denis.be
het�univ-nantes.fr3 Email: lippi�i3s.uni
e.frThis paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

file:denis.bechet@univ-nantes.fr
file:lippi@i3s.unice.fr

Be
het and Lippihard intera
tion system into hard
ombinators has a quite di�erent
hara
ter fromthe
orresponding translation for intera
tion nets where the key te
hni
al point isimplementing the dupli
ation of some nets. 4 Here we shall represent nodes as bi-nary words and
al
ulate the transformations with boolean fun
tions. The namehard intera
tion nets is well-
hosen, sin
e they are a form of abstra
t hardware. Inthis perspe
tive, it is interesting to sum up the important rules and give the basi

omponents that
an be used to
onstru
t asyn
hronous
ir
uits. For example, itshould be possible to build an asyn
hronous
omputer simply by following
lassi
alVon Neumann
omputer ar
hite
ture and using hard
ombinators [1℄.Notation. The domain of some variables is impli
itly given by their names withthe following
onventions: x; y; z; x0; x1; x2; ::: are binary digits, p; q; r; s; t are binarywords and �; � and � are signatures (+ or �). Con
atenation of p and q is noted pqso xy is a word with two digits and the s
alar produ
t of x and y is expli
itly notedx � y. xn denotes the word x:::x with n letters. jpj is the length of p. The set ofboolean values f0; 1g is noted B and the set of natural numbers N.2 Hard intera
tion netsWe present hard intera
tion nets informally from s
rat
h without any referen
e tolinear logi
 or even to intera
tion nets. A hard intera
tion system (or hard systemfor short) is
omposed with a set of symbols and their
orresponding arity and witha set of intera
tion rules.2.1 Cells, Ports, Nets and CutsO

urren
e of symbols are
alled
ells and have n + 1 ports where n is the
orre-sponding arity. Ea
h
ell has exa
tly one prin
ipal port (pi
tured with a blob) andn auxiliary ones:
01 n. . .�Nets are build with a set of
ells and free ports where ports (prin
ipal, auxiliaryand free ones) are
onne
ted pairwise. Cuts are parti
ular nets
omposed of two
ells
onne
ted by their prin
ipal ports.2.2 Intera
tion rulesThe di�eren
e between the prin
ipal port and the auxiliary ones is essential sin
erewriting (or intera
tion)
an be applied only on
uts. In other words, the leftmember of an intera
tion rule is
omposed of two
ells
onne
ted by their prin
ipalports. Intera
tion
onsists in relabeling
ells and
hanging the orientation of the4 more pre
isely prin
ipal nets for the
onnoisseur.17

Be
het and Lippiprin
ipal ports; we shall say that the
ell is turning. To sum up, an intera
tion ruleis pi
tured as follows, .
. | {z }`

kz }| {.
.

.�� �0� 0and we say that if an �-
ell intera
ts with a �-
ell it be
omes �0 and turns k times
ounter
lo
kwise. Similarly, �-
ell be
omes �0 and turns ` times. Note we areinterested only in deterministi
 hard intera
tion systems so there is at most oneintera
tion rule for ea
h pair of symbols.2.3 Redu
tionStarting from an initial net
ontaining
uts, we
an apply an intera
tion rule ob-taining another net and so on until an irredu
ible net if the redu
tion �nishes. Hardintera
tion systems are very simple sin
e the
omputation is lo
al (only two
ells areinvolved in a redu
tion) and the geometry of the net is invariant. However one
anshow [4℄ that it is
omplete from a
omputational point of view i.e one
an de�nea hard intera
tion system that simulate a Turing Ma
hine. Let us �nish with anessential property due to the lo
al syn
hronization.Proposition 2.1 (strong
on�uen
e) If a net � redu
es in one step to � and � 0,with � 6= � 0, then � and � 0 redu
e in one step to a
ommon net �.� � 0� �Proof The left member of an intera
tion rule is a
ut and � 6= � 0. Consequentlythe above redu
tions are applied on two di�erent instan
es of
uts. Two instan
esof
uts are ne
essarily disjoint (a
ell is in one
ut at most) so the
orrespondingintera
tion rules
an be applied independently. 2Consequently redu
tion is deterministi
 in a strong way: any redu
tion strategygives the same result with the same number of steps.Corollary 2.2 (redu
tion) If a net � redu
es to an irredu
ible net � in n steps,then any redu
tion starting from � eventually rea
hes � in n steps.18

Be
het and Lippi3 A universal system: hard
ombinatorsWe present a parti
ular hard system
alled hard
ombinators with four symbols andseven rules that is su�
ient to simulate all other hard systems. More pre
isely, we
an translate ea
h
ell � by a net [�℄ built with hard
ombinators su
h that,
).

.
.
.

.

.
.[�℄ [�0℄� 0�0� [� 0℄� [�℄

3.1 CellsOur system is
omposed of four di�erent symbols: two binary ones, 0 and 1, andtwo unary ones, + and �. x �
3.2 RulesThere are seven rules that
an be split into two groups: three rules between binary
ells and four rules between unary and binary
ells. There is no rules between unary
ells. Binary rules are also
alled uniform rules be
ause the prin
ipal port �turnsin the same dire
tion� (
ounter
lo
kwise) for ea
h intera
tion. The three uniformrules
an be summed up by the following s
hema where + denotes sum modulo 2.xy x+yx+yConsequently, the four other rules are
alled non-uniform rules be
ause the ori-entation of a binary
ell depends on the unary
ell intera
ting with it. Intuitively,(+)-
ells let binary
ells turn
ounter
lo
kwise and (�)-
ells for
e them to turn
lo
kwise. 19

Be
het and Lippi
�
�
0 0 0 0
1 1 1 1�+ +

� +
+De�nition 3.1 [
lo
ks℄ for any bit x, =yx xClo
ks are introdu
ed for graphi
al
onvenien
e to avoid
ompli
ated
rossing ofwires. They are noted yx be
ause they intera
t as binary
ells ex
ept their prin
ipalport turns
lo
kwise. For example, we have the following redu
tions.yx yx+yyx yx+yx+y yyy yx+y

4 Uniform
omponentsIn this se
tion, we
onsider the subsystem
omposed only with the two binary
ellsand the
orresponding three uniform rules. Surprisingly, non trivial fun
tions
anbe built in this restri
tion and, indeed it is a de
isive step in the
onstru
tion of auniversal translation.De�nition 4.1 [binary pipes℄ for any bit x, x = x xLemma 4.2 for any bits x and y, �x y y xProof We apply uniform rules and the equality x+ x+ y = y mod 2
2xxyyxy x+yx+yxy yxxx

yy ==
20

Be
het and Lippi 2De�nition 4.3 [pipes℄ for any word p = x1::: xn, .p = . . x1xnNotation. We also pi
ture an unknown pipe nz }| { for pipes
orresponding to anyword of size n or simply if there is no ambiguity. Those blank representations
ome from the idea that if one does not know what is stored in a pipe then, thepla
e is free !Lemma 4.4 for any words p and q, qp q p�Proof by indu
tion on p and q. 2De�nition 4.5 [zero℄ =0 0000Lemma 4.6 for any bit x, 0 0�x xProof The above redu
tion
an be easily
he
ked with the binary rules. 2De�nition 4.7 [seesaws℄ for any bit x, = 0xxAs
lo
ks, seesaws are introdu
ed to simplify the de�nitions of the other nets anddo not have any fun
tional property. Seesaws intera
t as binary
ells: they
hangetheir prin
ipal port and their symbol is summed with the intera
ting
ell.Remark 4.8 Do not
onfuse between pipes (binary words in a square box), seesaws(bits in a round box) and unary
ells (signatures in a round box).
De�nition 4.9 [diodes℄ = 0y xx

0 y
Remark 4.10 Unlike pipes or zero, diodes
orrespond to a set of nets not to aunique one. Indeed, bits x and y in the above de�nition
an have any binary values sothere are four di�erent representation of a diode. We shall use this kind of de�nitionfor other
omponents. 21

Be
het and Lippi
Lemma 4.11 For any bits x and y, �xy x+yxProof The above redu
tion
an be easily
he
ked with the uniform rules. 2Remark 4.12 A

ording to remark 4.10, the above lemma should be read �startingfrom any representation of the diode in the left member, we obtain another (possiblydi�erent) representation of the diode in the right member.5 Invariant netsDe�nition 5.1 [Invariant nets℄ Let us
onsider a net � where free ports are par-titioned into three sets: inputs, pi
tured with an in-going arrow, outputs, pi
turedwith an out-going arrow, and unused, pi
tured with no arrow. We say that � is in-variant on inputs p1; :::; pk and produ
es outputs q1; :::; q` when we have the followingredu
tion, �p1 . . . pk.q1 q`�.�
where the length of the �input� pipes are respe
tively jp1j, ..., jpkj and the lengthof the �output� ones jq1j, ..., jq`j. We shall use the following notation for invariantnets, .q1 q`. �p1 pk. .
Remark 5.2 We do not mention where are the prin
ipal ports of �. Indeed, theimportant point is to identify the inputs and the outputs and to know how theyintera
t with pipes.As explained in remark 4.10, the net �
orresponds to a
lass of nets and theredu
tion above means that the right member is in the same
lass of nets as the leftmember. For example, in de�nition 5.6 , x0 and y0 range over f0; 1g and � rangesover f+;�g so there are eight di�erent representations.Remark 5.3 A

ording to the previous de�nition, an invariant net is a pair
om-posed of a net and a partition of its free ports and there may be several invariant22

Be
het and Lippinets
orresponding to a unique net. However, we also say that a net is invariantwhen su
h a partition exists.Remark 5.4 In the previous se
tion we introdu
ed unknown pipes and zero whi
hare invariant. More pre
isely, p p and 00 .5.1 Dupli
ator and arithmeti
 operationsTo avoid
umbersome repetitions, we give the de�nition and the
orresponding in-varian
e property of the following nets in one shot. For example, the net Æ is de�nedby the right member of the equality and we show that it is invariant on input p andprodu
es output p twi
e.De�nition-Lemma 5.1 (dupli
ator) =pp pÆ xxProof We apply lemma 4.11 for the diode and the uniform rules. 2De�nition-Lemma 5.2 (plus) + =yx+ y x1x x1
Remark 5.5 + denotes the sum modulo 2.Proof We apply lemma 4.11 for the diode and the uniform rules. 2In the uniform subsystem, we have de�ned
onstants, pipes, dupli
ation andplus. So one may wonder if it is possible to de�ne produ
t as well in this subsystem.The answer is probably negative. Indeed, the plus operation (binary xor) is weakerthan binary addition that is
omputing the sum and but also the
arry. Moreover,one
an prove that is impossible to build a uniform system that is universal.
De�nition 5.6 [sequential produ
t℄ x� y =�x y x0x0 � y0y0

The sequential produ
t use input y �rst. If y is zero the result is dire
tly returnedand input x is not used. 23

Be
het and Lippi
De�nition 5.7 [partial quotient℄ x=yyx =� y0x0yx0 � y0

The partial quotient
an be
onsidered as the dual of the sequential produ
t.Both inputs are used but it returns no result when input y is zero.Lemma 5.8 We have the following invariants for sequential produ
t and partialquotient,
0� 0 , x� 1x , x 0� and 1xx �Proof Trivial with uniform but also non-uniform rules. 25.2 CompositionThe �rst steps, building invariant nets from s
rat
h
an be
ompared to bootstrap inthe sense that the di�
ult part is only to build the very �rst
omponents (
onstantzero, dupli
ator, produ
t). It is now easy to
ompose invariant nets with pipes andbuild other more
ompli
ated nets.However, for syn
hronizations reasons, it is not always possible to
ompose twoinvariant nets by plugging dire
tly outputs of the �rst one with inputs of the se
ondone. To avoid this problem, outputs of invariant nets are
onne
ted to unknownpipes. It is not di�
ult to verify that su
h �bu�ered� invariant nets
an be freely
omposed. In some
ases, we
an suppress those �output pipes� but the proof of theinvarian
e property is tedious. Consequently, from now on, all outputs of invariantnets are
onne
ted to pipes when they are
omposed with other invariant nets.A �rst appli
ation is to implement binary word
onstants.De�nition-Lemma 5.3 (
onstant)

p = Æp p
Remark 5.9 For
larity,
onstants are de�ned with non-redu
ed nets. We
an verifythat we
an redu
e them and by the
on�uen
e property, we
an use the redu
ed form.Let us give an invariant net for boolean and.24

Be
het and LippiDe�nition-Lemma 5.4 (boolean and)^ = ��x y Æx ^ yProof We
onsider two
ases: y = 0 and y = 1 and apply
omposition. 2Remark 5.10 x^y = x�y so the di�eren
e between sequential produ
t and booleanand is that boolean and always uses its two inputs.In the same way, we
an de�ne invariant nets with several inputs and outputs forve
torial boolean fun
tions on several inputs. Eventually, those invariant nets
an beused to build the
orresponding fun
tions on binary words. To that purpose, the netsspit and merge
an be
omposed to build some kind of parallel/serial adaptators.De�nition-Lemma 5.5 (split and merge)
=split � �yxy Æx 10 01
=merge +� �10 01yxyx

Proof By
omposition. 26 The TranslationNow we are ready to translate a given hard intera
tion system into the system ofhard
ombinators presented in se
tion 3. Symbols are numbered and represented bybinary words of a �xed length N . A �rst idea is to represent the set of rules that wewant to en
ode by a partial fun
tion ' : BN� BN ! BN � N where '(p; q) = (p0; k)if p intera
ts with q, be
omes p0 and turns k times. Let us remark that we need thevalues of '(p; q) and '(q; p) to
ompute the redu
tion between p and q.In fa
t, we
hoose a slightly di�erent representation and introdu
e stable
ellsthat intera
t with another (stable)
ell and unstable
ells that intera
t internally25

Be
het and Lippirea
hing eventually a stable state. Ea
h intera
tion is de
omposed into one exter-nal intera
tion between two stable
ells followed by several (possibly zero) internalintera
tions inside ea
h unstable
ell. This way we
an impose that a
ell turns (uni-formly !) exa
tly on
e at ea
h (external or internal) intera
tion. Consequently, theset of rules is represented by a partial fun
tion : BN�BN ! BN where (p; q) = p0if p intera
ts with q, be
omes p0 and turns exa
tly on
e.Let us de�ne from '. For ea
h
ouple of (stable) symbols p and q su
h that'(p; q) = (p0; k + 1) 5 we introdu
e k new (unstable) symbols p1; :::; pk and set,8>>>>>>>>>><>>>>>>>>>>:
 (p; q) = p1 (p1; 0N) = p2... (pk�1; 0N) = pk (pk; 0N) = p0Sin
e unstable
ells do not intera
t with another one, we arbitrarily �x the valueof the se
ond argument of to 0N . Here is the graphi
al representation of anintera
tion between p and q where '(p; q) = (p0; k + 1) and '(q; p) = (q0; `+ 1),....1 externalintera
tion k internalintera
tions intera
tions` internalk + 1

`+ 1 p q0p0 p0q1q p1q1Let us introdu
e two invariant nets. The �rst one
orresponds to the fun
tion that
omputes the new symbol after an (internal or external) intera
tion. These
ond one
alled dis
riminant �, says if a
ell is stable or not.De�nition 6.1 [transition and dis
riminant℄
 (p; q) p q if p is stable�pp otherwise0N1NNow we
an give the translation of the port of a
ell into two parts: �in and �out.The important idea is that �in
omputes the next symbol p0 without any intera
tionwith q in the
ase p is not stable. In the same way �out gives the
urrent symbol ponly if p is stable.5 If the prin
ipal port remains un
hanged after redu
tion, we say that it turns a + 1 times where a is thearity of the
ell. 26

Be
het and LippiDe�nition 6.2
��=�outpp q =p0p �in � �

Lemma 6.3
 (p; q)

�outp
�inp q (p; 0N)�outpp

if p is unstable
if p is stable

and
and

�inp
Invariant nets are easy to use and
ompose be
ause we feel �at home� withinputs/outputs. However this notion is not mandatory for general intera
tion nets.Indeed, in the translation of a port, we need some kind of �full/duplex�
onne
tionsin
e a
ell outputs its
urrent symbol to another
ell but also inputs the symbol ofthe
ell with whom it is intera
ting ! This is exa
tly what is done by the net
.De�nition 6.4 [gamma℄ xxÆ=
pqi yyPort p
orresponds to an input, port q to an output and i to the �full/duplex�interfa
e. Ea
h port of a
ell
orresponds to a
-
ell; when two
ells intera
t, theinput of a
-
ell is reprodu
ed on the output of the other
-
ell. This property issummed up in the following lemma. 27

Be
het and LippiLemma 6.5
pq
qpRemark 6.6 Let us remark that surprisingly
 is built only with uniform
ells.Now we
an
ompose, �in, �out and
 and give the translation of a port �.A

ording to the previous paragraph, port i (interfa
e) is both an input and anoutput.De�nition 6.7
=�i pp0 �out
�in

Æ
Lemma 6.8 (external and internal intera
tion)

if p is unstablep� (p; 0N)
if p is stable� (q; p)qp� (p; q)

Proof By
omposition. 2The above lemma details two
ases: two stable
ells intera
t with one anotheror an unstable
ell intera
t internally. Consequently, port i is unused or plugged tothe interfa
e of another � net. 28

Be
het and LippiDe�nition 6.9 [translation of a
ell℄� �p �.=.pwhere the length of the pipes is jpj = NBy analogy with
omputer ar
hite
tures, �
orresponds to a form of Arithmeti
and Logi
al Unit (ALU) and pipe to a register. Then this basi
 ar
hite
ture (a net�
omposed with a pipe) is repeated for the translation of ea
h port of the
ell.Another possibility is to �
entralize� the transition fun
tion for the whole
ell. Theadvantage is we do not have to introdu
e unstable
ells but on the other side wehave to implement a more
ompli
ated
omponent for the interfa
e part.Finally, it is now easy to verify that our translation simulates the rules of a givenhard system.Theorem 6.10
).

.
.
.

.
. p0p pqq � q0p0q0Proof Apply lemma 6.8 and de�nition 6.9. See appendix A for the detailed redu
-tion. 27 Con
lusionThe system we propose seems to be a good
andidate for a universal hard system.However this work is a �rst step in the domain of hard intera
tion nets. Indeedmany questions related to fundaments as well as appli
ations remain still open.� The �rst one
on
erns the minimality of su
h a system; is it possible to give asimpler universal system with fewer symbols or rules? For instan
e, it is not easyto know whether three symbols would be su�
ient. We only know that a system
omposed only of uniform rules
annot be universal.� There is a
orre
tness
riterion for intera
tion nets imported from linear logi
 toprevent deadlo
ks. It is important to reformulate this
riterion for the parti
ular
ase of hard intera
tion nets sin
e it is an opportunity to simplify and perhaps tore�ne it.� Although (general) intera
tion nets
annot be translated into hard intera
tionnets, it is interesting to see if there
ould be a
ompilation pro
ess for some29

Be
het and Lippisub
lass of intera
tion nets. Intera
tion nets would be the high level program-ming language whereas hard intera
tion nets would be the target (low level) lan-guage. In the same spirit, interpreters have been developed for intera
tion nets.Would it be possible to physi
ally implement
omponents for hard
ombinators?In other words, we
an
onsider hard
ombinators as
omponents for ele
troni
asyn
hronous
ir
uits?� As intera
tion nets
an be
ompared to graph rewriting systems, hard intera
tionnets
an be
ompared to graph relabeling. These te
hniques have been parti
ularlysu

essful in the study of graph ele
tion algorithms [2℄. It would be interesting toimplement su
h algorithms with hard intera
tion nets and this way take bene�tfrom the
on�uen
e property! More generally, it would be interesting to
omparehard intera
tion nets with other existing rewriting te
hniques.� The �xed geometry of hard intera
tion nets gives them a very similar �avour to
ellular automata, or a generalization of
ellular automata to non-re
tangular gridsand there are universality results for
ellular automata so it should be interestingto
ompare those rewriting systems.

30

Be
het and LippiA Simulation of hard intera
tion rulesWe detail the proof of theorem 6.10. We
onsider the intera
tion between a
ell pand q where p be
omes p0 and turns k + 1 times and q be
omes q0 and turns `+ 1times. �

.
.
��� � �

��� � �
�

�.
.

��� � �
���� � �

.
.
���� � �

���� � �
.

.
��� � � ��� � �

�
� �
q0

p1
q1

p

�
q`p0

�

pk

q

31

Be
het and LippiReferen
es[1℄ Ce
ile Germain, Daniel Etiemble. Ar
hite
ture des Ordinateurs. Cours de Li
en
e Informatique,Université d'Orsay, 2005.[2℄ Emmanuel Godard, Yves Métivier, M. Mosbah, and A. Sellani. Termination dete
tion of distributedalgorithms by graph relabelling systems. In pro
eedings of the �rst Conferen
e on GraphTransformation, 2002.[3℄ Yves Lafont. Intera
tion nets. In pro
eedings of the 17th Annnual ACM Symposium on Prin
iples ofProgramming Languages, Orlando (Fla., USA), pages 95�108, 1990.[4℄ Yves Lafont. Intera
tion
ombinators. Information and Computation, 137(1):69�101, 1997.[5℄ Sylvain Lippi. En
oding left redu
tion in the lambda-
al
ulus with intera
tion nets. Mathemati
alStru
tures in Computer S
ien
e, 12(6), De
ember 2002.[6℄ Sylvain Lippi. in2: a graphi
al interpreter for the intera
tion nets. In Pro
eedings of Rewriting Te
hniquesand Appli
ations (RTA '02). Springer Verlag, 2002.[7℄ Ian Ma
kie. Yale: Yet another lambda evaluator based on inteta
tion nets. In Pro
eedings of the 3rdACM SIGPLAN International Conferen
e on Fun
tional Programming (ICFP'98). ACM Press, 1998.[8℄ Jorge Sousa Pinto. Implantation parallèle ave
 la logique linéaire (appli
ations des réseaux d'intera
tionet de la géométrie de l'intera
tion). PhD thesis, E
ole Polyte
hnique, 2001.

32

TERMGRAPH 2007

Universal Boolean SystemsDenis B�e
het1LINAUniversit�e de NantesNantes, Fran
eSylvain Lippi2Universit�e de Ni
eSophia Antipolis, Fran
eAbstra
tBoolean intera
tion systems and hard intera
tion systems de�ne nets of intera
ting
ells. They are based onthe same lo
al intera
tion prin
iple between two
ells as intera
tion nets but do not allow that the stru
tureof nets may evolve. With boolean nets, it is not possible to
reate or destroy
ells or links between existing
ells. They are very similar to hardware
ir
uits but based on an impli
it rendez-vous information ex
hangeme
hanism.If we want to implement su
h systems using hardware
ir
uits, it is important to de�ne a set of universal
ombinators that redu
es this task to the implementation of a �xed number of known agents. Here, we showhow we
an simulate every hard intera
tion system by a universal boolean intera
tion system
omposed ofthree
ombinators: a dupli
ator, a NAND gate and a three-state input/output
hannel.Keywords: intera
tion net, hard intera
tion system, boolean intera
tion system,
ombinator, universalsystem.1 Introdu
tionIntera
tion nets [6℄ are a programming paradigm inspired by Girard's proof nets forlinear logi
 [3℄. Some translations from �-
al
ulus into intera
tion nets [9,5,10℄ orfrom proof nets [7,12,2,13℄ show that intera
tion systems are interesting for
om-putation. They are a spe
ial
ase of a hypergraph repla
ement systems [14℄ or ofgraph relabelling systems [11℄ but are strongly
on
uent. In fa
t, intera
tion netredu
tions are purely lo
al and
on
uent. Moreover, the number of steps that arene
essary to redu
e
ompletely a net is independent of the way one may
hoose.From the point of view of �-
al
ulus, translations used in [4,5℄
aptures optimalredu
tion.1 Email: Denis.Be
het�univ-nantes.fr2 Email: lippy�uni
e.fr This paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

mailto:Denis.Bechet@univ-nantes.fr
mailto:lippy@unice.fr

B�e
het & LippiHard intera
tion systems are, in fa
t, a variant of intera
tion systems where rulesare
onstrained in su
h a way that the stru
ture of nets
an not
hange. Rules donot
reate or destroy
ells or links between
ells. They
an only
hange the symbolof agents and the port that is prin
ipal.In [8℄, Lafont introdu
es a universal intera
tion system with only three di�erentsymbols
, Æ and �. Æ and � are respe
tively a dupli
ator and an eraser and
 is a
onstru
tor. This system preserves the
omplexity of
omputation for a parti
ularsystem. The number of steps that are ne
essary to redu
e a simulated intera
tionnet is just (at most) the number of steps of the original intera
tion net multipliedby a
onstant (whi
h depends only on the simulated system and not on the size ofthe original intera
tion net). [1℄ shows that there exists a universal system withonly two symbols.However, both systems
an not be
onsidered as universal hard intera
tion sys-tems be
ause the rules that de�ne the systems do not preserve the stru
ture ofnets. The paper investigates this problem and shows how we
an simulate everyhard intera
tion system by a universal boolean intera
tion system. In fa
t, booleanintera
tion systems are hard intera
tion systems where information that are ex-
hange between agents are binary like hardware
ir
uits
onne
ted by a wire
anonly
ommuni
ate binary information.We thing that this result is interesting if we want to implement (eventually withhardware
ir
uits) su
h system using a �nite set of
ombinators. This result alsoshows the main prin
iples behind hard intera
tion system: dupli
ation (the systemis linear),
omputing (something must be done) and
onditionnal input/outputintera
tion (the
ells must
hoose to whom they want to intera
t to).This paper is organized as follows: after an introdu
tion to intera
tion nets andhard and boolean intera
tion systems, the notions of intera
tion net homomorphism,simulations and universal hard intera
tion systems are presented. Se
tion 4 showshow to translate a system to a universal system.2 Hard intera
tion systemIntera
tion nets are a model of
omputing introdu
ed by Yves Lafont in [6℄. Webrie
y presents intera
tion nets and hard intera
tion systems are. Boolean intera
-tion systems are presented in the Se
tion 4.2.1 Agents and netsAn intera
tion net is a set of agents linked together through their ports. An in-dividual agent is an instan
e of a parti
ular symbol whi
h is
hara
terized by itsname � and its arity n � 0. The arity de�nes the number of auxiliary ports asso
i-ated to ea
h agent. In addition to auxiliary ports, an agent owns a prin
ipal port.Graphi
ally, an agent is represented by a
ir
le :34

B�e
het & Lippi� n01
In fa
t, the ports form a
ir
ular list that are represented on the
ir
le. Theprin
ipal port is marked by a triangle and the name is put inside the
ir
le. The(dynami
) state of an agent is only determined by its name and the position of theport that is prin
ipal.An intera
tion net is a set of agents where the ports are
onne
ted two by two.The ports that are not
onne
ted to another one are the free ports of the net andare distinguished by a name. The set of names of the free ports of a net is theinterfa
e of this net. Below, the interfa
e is fy; xg. � has one auxiliary port, � hastwo and � has none. � �� ���

y

x2.2 Hard intera
tion rule and hard intera
tion systemAn intera
tion net
an evolve when two agents are
onne
ted through their prin
ipalports. An intera
tion rule is a rewriting rule where the left member is
onstitutedof only two agents
onne
ted through their prin
ipal ports and the right member isany intera
tion net with the same interfa
e. For hard intera
tion system, the rulemust preserve the stru
ture of nets. Thus the right member of a hard interationrule is also
onstituted of two agents with the same arities as the agents of the leftmember of the rule and they must be
onne
ted by a link that
orresponds to thesame ports as for the left member. In fa
t, the right member of a rule is the same asits left member ex
ept that names may be di�erent and the ports that are prin
ipalmay be di�erent (at least one prin
ipal port must be di�erent).The right member of a hard intera
tion rule
an be
hara
terized for ea
h inter-a
ting agent by the new name of the agent and by a rotational number from 0 to n(n is the arity of the agent) that indi
ates whi
h port,
ounted
lo
kwise from the
urrent prin
ipal port, be
omes prin
ipal (0 means that the prin
ipal port does not35

B�e
het & Lippimove).
�! y1 ynyi

xk x1
Æxj
y1 ynyi
xk x1��xjWe write this rule [�; �℄! [
;+i; Æ;+j℄ whi
h means that
 repla
es �, Æ repla
es�, the prin
ipal port of
 is the j-th
lo
kwise port from the prin
ipal port of � andthe prin
ipal port of Æ is the i-th
lo
kwise port from the prin
ipal port of �.An intera
tion net that does not
ontain two agents
onne
ted by their prin
ipalport is irredu
ible. A net redu
es to another net by applying su

essively zero, oneor several times hard intera
tion rules to
ouples of agents
onne
ted through theirprin
ipal ports. Ea
h step substitutes the
ouple by the right member of the rule.A hard intera
tion system I = (�;R) is a set of symbols � and a set of hardintera
tion rules R where agents in the left and right members are instan
es of thesymbols of �.A hard intera
tion system I is deterministi
 when (1) there exists at most onehard intera
tion rule for ea
h
ouple of di�erent agent and (2) there exists at mostone hard intera
tion rule for the intera
tion of an agent with itself. In this
ase, theright member of this rule must be symmetri
 from the
entral point (this is ne
essaryfor a deterministi
 system). A hard intera
tion system I is
omplete when there isat least one rule for ea
h
ouple of agent. In this paper we
onsider deterministi
and
omplete systems. With these systems, we
an prove that redu
tion is strongly
on
uent 3 . In fa
t, this property is true whenever the system is deterministi
.3 Universal hard intera
tion systemsUniversality means that every intera
tion system
an be simulated by a universalintera
tion system. Here, we use a very simple notion of simulation that is basedon intera
tion net homomorphism.3.1 Intera
tion net homomorphismLet � and �0 be two sets of symbols. An homomorphism � from � to �0 is a mapthat asso
iates to ea
h symbol in � an intera
tion net of agents of �0 with the sameinterfa
e. This homomorphism is naturally extended to intera
tion nets of agentsof �.3 A system is strongly
on
uent if and only if when a net redu
es in one step to N and N 0, then N andN 0 redu
e in on step to a
ommon net. 36

B�e
het & Lippi3.2 SimulationWe say that an homomorphism � from � to �0 de�nes a simulation of an intera
tionsystem I = (�;R) by another intera
tion system I 0 = (�0;R0) if the redu
tionme
hanism on intera
tion nets of I and I 0 are
ompatible by � [8,1℄: for everyintera
tion net N of �:(i) N is irredu
ible if and only if �(N) is irredu
ible;(ii) if N redu
es to M then �(N)
an redu
e to �(M).This de�nition brings some properties with
omplete and deterministi
 intera
tionsystems:(i) the translation of an intera
tion net
omposed of a unique agent must beirredu
ible;(ii) this translation has at most one agent whose prin
ipal port belongs to theinterfa
e and the symbol of this interfa
e that is
onne
ted to this agent is thesame as the symbol that is
onne
ted of the prin
ipal port of the original agent;(iii) this translation must be
onnexe;(iv) an homomorphism is a simulation if (i), (ii) and (iii) are veri�ed and if the leftmember N (
omposed of two agents) and the right member M of every rulein R verify �(N) redu
es to �(M);(v) the simulation relation is transitive and symmetri
.3.3 Universal hard intera
tion systemA hard intera
tion system U is said to be universal if for any hard intera
tion systemI, there exists a simulation �I of I by U .4 A universal boolean intera
tion systemIn this se
tion, we show how to simulate a parti
ular hard intera
tion system I witha �xed hard intera
tion system.4.1 Simulation with agents of arity 2We
an normalize the arity of agents to always be 2. In fa
t, we have seen that a rulemay be
hara
terized by two informations for ea
h agent of the right member: thenew name and the number of
lo
kwise shifts, from 0 to n, where the new prin
ipalport must be set.For I = (�;R), let N � 0 be the maximum arity of �. We de�ne �0 =f(
; 2)g [f(�j ; 2) j (�; i) 2 � ; j 2 f0; : : : ; Ngg. Let �� the homomorphism wherean agent � of arity i is transformed into an agent �0 and i agents
 ea
h of arity 2:37

B�e
het & Lippi
yn� yn�! y1y1 �0

We de�ne I 0 = (�0;R0), where R0 is de�ned as follows. For I, the rule between� and � results in
 in pla
e of � with a
lo
kwise shift of i for the prin
ipal portand Æ in pla
e of � with a
lo
kwise shift of j for the prin
ipal port. This rule isrepla
ed by a rule between �0 and �0. The right member of the rule be
omes
iand Æj . If i = 0 (resp. j = 0) the prin
ipal port of
i (resp. Æj) is the same as theprin
ipal port of �0 (resp. �0). Otherwise, the prin
ipal port is the next
lo
kwiseport. For 1 � i � N , the rule between
 and
i (resp. Æi) repla
es
 by
i�1 (resp.Æi�1) and
i (resp. Æi) by
. If i = 1, the prin
ipal port of
i�1 (resp. Æi�1) is thenext
lo
kwise port. Otherwise, it is the next
ounter-
lo
kwise port. For
, it isthe next
lo
kwise port.[�; �℄! [
; i; Æ; j℄ is repla
ed by one of the following rules:� [�0; �0℄! [
i; 0; Æj ; 0℄ if i = 0 and j = 0.� [�0; �0℄! [
i; 0; Æj ;+1℄ if i = 0 and j 6= 0.� [�0; �0℄! [
i;+1; Æj ; 0℄ if i 6= 0 and j = 0.� [�0; �0℄! [
i;+1; Æj ;+1℄ if i 6= 0 and j 6= 0.The rules for
 are:� [
;
i℄! [
i�1;+1;
;+1℄ if i = 1.� [
;
i℄! [
i�1;+2;
;+1℄ otherwise.Theorem 4.1 �� de�nes a simulation of I by I 0The proof is straightforward: the translation of an agent is a loop of agents whi
his
onnexe and irredu
ible and has only one prin
ipal port that is
onne
ted in theinterfa
e to the same symbol as the original agent. Se
ondly, if N is the left memberandM the right member of a rule of I, ��(N) redu
es to ��(M) (usually in morethan one step depending on the
lo
kwise number of shifts of the prin
ipal ports ofthe agents between N and M).4.2 Boolean intera
tion systemThe se
ond step in our
onstru
tion
onsists in the simulation of the boolean fun
-tions. For that, we use boolean agents. This kind of agents has a name that is
omposed of two informations: a boolean output state that
an be either 0 or 1 andan internal state p. We note 0p and 1p these names. A boolean intera
tion rule
on
erning two boolean agents is a hard intera
tion rule [�p; �q℄ ! [
r;+i; Æs;+j℄(�; �;
; Æ 2 f0; 1g) that de�nes
, r and i as fun
tions of �p and � (they do notdependent of q whi
h is the internal state of �q) and Æ, s and j as fun
tions of �qand � (they do not dependent of p whi
h is the internal state of �p).38

B�e
het & Lippi
�! y1 ynyj+1

xk x1
rÆsxi+1
y1 ynyj+1
xk x1�p�q
xi+1This kind of hard intera
tion system
an be de�ned by a boolean fun
tion forea
h symbol (and not for a
ouple of agents as with a hard intera
tion rule) that we
all boolean intera
tion rule: �p[�℄! [
r;+i℄. This boolean rule des
ribes a half ofan intera
tion rule. It says that an agent �p is transformed into an agent
r whenit intera
ts with an agent with a boolean output state �. The new prin
ipal port isthe i-th
lo
kwise port from the
urrent prin
ipal port. We
all boolean intera
tionsystems su
h hard intera
tion systems.4.3 Simulation of boolean
ir
uitsEvery boolean fun
tion
an be simulated by a parti
ular boolean agent. For in-stan
e, a logi
al binary NAND (not and) gate is simulating by an agent with 3ports (the arity of the symbols is 2). This gate reads the two inputs then givesthe result on its output. After this
y
le, the gate starts again to read the inputsand write the output in an endless loop. Starting with 0a on the �rst input port,the agent
ontinues with the se
ond input port using one of the two boolean inte-a
tion rules: 0a[0℄ ! [0b;+1℄ or 0a[1℄ ! [0
;+1℄. Then, after the intera
tion withthe se
ond input, the gate delivers the result on the output port using one of thefour boolean intea
tion rules: 0b[0℄ ! [1d;+1℄, 0b[1℄ ! [1d;+1℄, 0
[0℄ ! [1d;+1℄or 0
[1℄ ! [0d;+1℄. Finally, the gate returns to the �rst input port, ready forthe next
y
le, using one of the four boolean intea
tion rules: 0d[0℄ ! [0a;+1℄,0d[1℄! [0a;+1℄, 1d[0℄! [0a;+1℄ or 1d[1℄! [0a;+1℄.A boolean dupli
ator is also helpful. This agent has one input and two outputs.It reads the input, puts it on the �rst output then on the se
ond output and startsagain a new
y
le. The operation are sequential like the NAND gate. Startingwith 0e on the input port, the agent goes to the �rst output using one of the twoboolean intea
tion rules: 0e[0℄ ! [0f ;+1℄ or 0e[1℄ ! [1f ;+1℄. Then, it swit
hes tothe se
ond output using one of the four boolean intea
tion rules: 0f [0℄ ! [0g;+1℄,0f [1℄ ! [0g;+1℄, 1f [0℄ ! [1g;+1℄ or 1f [1℄ ! [1g;+1℄. Finally the agent returns tothe input port, ready for the next
y
le, using one of the four boolean intea
tionrules: 0g[0℄! [0e;+1℄, 0g[1℄! [0e;+1℄, 1g[0℄! [0e;+1℄ or 1g[1℄! [0e;+1℄.The other kinds of logi
al operators like OR, NOT or AND are also easy tosimulate. In fa
t, every ve
tor of boolean fun
tion with several inputs and severaloutputs may be simulated by a boolean agent and its boolean intea
tion rules.39

B�e
het & LippiBut, the NAND and the boolean dupli
ator are enough to simulate every ve
tor ofboolean fun
tions.Theorem 4.2 Every (ve
tor of) boolean fun
tion
an be simulated by a booleanintera
tion system using the previous symbols and their rules (this system has 5+5 =10 symbols).Proof. In fa
t, every boolean fun
tion of several variables
an be
omputed us-ing binary NAND gates. Be
ause ea
h variable
an be used more than on
e, weneed a dupli
ator (the
onne
tions between dupli
ators and NAND gates must bedone
arefully to avoid deadlo
k be
ause the inputs of NAND gates are tested ina
ertain order and the outputs of dupli
ators are a
tivated in a
ertain order).When a variable does not appear in the boolean fun
tion, we have to \forget" itsvalue. A very simple solution
onsists in the introdu
tion of this variable x into theboolean fun
tion f using the following formula: f is repla
ed by f or (x and not x).Thus every variable appears at least on
e in f and it is not ne
essary to forget anoutpout. 24.4 Simulation of boolean I/O
hannelsTo �nish with the di�erent bri
ks of our universal boolean intera
tion system, weneed a boolean devi
e that re
eives a validation that enables or not an I/O intera
-tion. If the
ommuni
ation is enabled the
hannel writes the input bit to the I/Oport, waits for a boolean intera
tion, reads the bit and
opies it to the ouptut. Ifthe
ommuni
ation is not enabled, the
hannel
opies the input bit to the ouputwithout intera
ting through its I/O port.
I/O port EnableChannelInput

Output
This devi
e is simulated by a boolean agent. Starting with the state 0h, thisagent looks at the enable port. It swit
hes to the input port using one of the twoboolean intera
tion rules: 0h[0℄ ! [0i;+1℄ or 0h[1℄ ! [0j ;+1℄. Then, it gets theinput bit and following the state, puts the prin
ipal port on the I/O port (state 0i)or on the output port (state 0j): 0i[0℄! [0k;+1℄, 0i[1℄! [1k;+1℄, 0j [0℄! [0l;+2℄ or0j [1℄! [1l;+2℄. If the
ommuni
ation is enabled (states 0k or 1k), the
hannel givesits boolean state through the I/O port and reads the boolean state of the booleanagent that is
onne
ted to this port. The
hannel then swit
hes to the output portusing one of the four boolean intera
tion rules: 0k[0℄ ! [0l;+1℄, 0k[1℄ ! [1l;+1℄,1k[0℄! [0l;+1℄ or 1k[1℄! [1l;+1℄. Now, even if the
ommuni
ation is not enabled,the agent returns to the ouput port its boolean state whi
h is either the read bit ora
opy of the input bit. After that, it goes ba
k to the enable port using one of the40

B�e
het & Lippirules: 0l[0℄! [0h;+1℄, 0l[1℄! [0h;+1℄, 1l[0℄! [0h;+1℄ or 1l[1℄! [0h;+1℄.4.5 Simulation of a boolean intera
tion
ontrollerA boolean intera
tion
ontroller is a devi
e that has a state, input/output boolean
hannels and a transitional fun
tion. The
ontroller
hooses one of its input/output
hannel, puts a boolean information on it, waits until it re
eives a boolean informa-tion from the input/output
hannel and, following its transitional fun
tion,
hangesthe state. The
ontroller repeats inde�nitely these same steps.
I=O1I=Ok ControllerChannel kChannel 1 Transitionfun
tionNew stateCurrent state&InputEnable I/O kEnable I/O 1Input

OutputThe
ontroller and the transition fun
tion
an be simulated by a boolean inter-a
tion system using NAND and dupli
ators agents. Channels are simulated by thespe
ial boolean agent presented before. Thus, every boolean intera
tion
ontroller
an be simulated by a boolean intera
tion system that has three kind of
ir
uits:NAND, dupli
ators and
hannels.4.6 Simulation of a hard intera
tion systemIt is relatively easy to see that every hard intera
tion system where the symbols arespe
i�
 to a port (the prin
ipal port of an agent must be the same ea
h time the samesymbol appears on the agent) like the system that we have after the simulation by asystem with agents or arity 2
an be simulated by a parti
ular boolean intera
tion
ontroller.Theorem 4.3 The hard intera
tion systems I 0 obtained by Theorem 4.1
an besimulated by a boolean intera
tion
ontroller (that depends of I 0).Proof. We need to
ode the symbols of I 0 by binary numbers in a �nite spa
e. Ifthe system has N symbols, we need K � log2(N) bits. The
ontroller
an be buildin su
h a way to operate with K bits rather than 1 (in the same spirit as we have32-bit pro
essors rather than 1-bit pro
essors). The
hannels must ex
hange K bitsserially (like a serial
ommuni
ation
hannel
ontrolled by mi
ro
ode). 2Corollary 4.4 The system with NAND gates, dupli
ators and I/O
hannels is uni-versal (the system has 5+5+7=17 symbols).5 Con
lusionWe have shown that there exist universal boolean intera
tion systems. Our universalsystem has 17 symbols and is very di�erent of Lafont's universal system. This41

B�e
het & Lippisystem is
ertainly not optimal in the sense that it is surely possible to �nd auniversal boolean intera
tion system with less symbols (and less rules) but booleanintera
tion systems are a spe
ial
ase of hard intera
tion systems and a solution foruniversal hard intera
tion systems does not ne
essary give a solution for booleanintera
tion systems.Referen
es[1℄ Denis Be
het. Universal intera
tion systems with only two agents. In Pro

edings of the TwelveInternational Conferen
e on Rewriting Te
hniques and Appli
ations, Utre
ht, The Netherlands, May2001, 2001.[2℄ S. Gay. Combinators for intera
tion nets. In I. C. Ma
kie & R. Nagarajan C. L. Hankin, editor,Pro
eedings of the Se
ond Imperial College Department of Computing Workshop on Theory and FormalMethods. Imperial College Press, 1995.[3℄ J.-Y. Girard. Linear logi
. Theoreti
al Computer S
ien
e, 50:1{102, 1987.[4℄ G. Gonthier, M. Abadi, and J.-J. Levy. The geometry of optimal lambda redu
tion. In Pro
eedingsof the Nineteenth Annual Symposium on Prin
iples of Programming Languages (POPL '90), pages15{26, Albuquerque, New Mexi
o, January 1992. ACM Press.[5℄ G. Gonthier, M. Abadi, and J.-J. Levy. Linear logi
 without boxes. In Seventh Annual Symposium onLogi
 in Computer S
ien
e, pages 223{234, Santa Cruz, California, June 1992. IEEE Computer So
ietyPress.[6℄ Y. Lafont. Intera
tion nets. In Seventeenth Annual Symposium on Prin
iples of ProgrammingLanguages, pages 95{108, San Fran
is
o, California, 1990. ACM Press.[7℄ Y. Lafont. From proof nets to intera
tion nets. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors,Advan
es in Linear Logi
, pages 225{247. Cambridge University Press, 1995. Pro
eedings of theWorkshop on Linear Logi
, Itha
a, New York, June 1993.[8℄ Y. Lafont. Intera
tion
ombinators. Information and Computation, 137(1):69{101, 1997.[9℄ J. Lamping. An algorithm for optimal lambda
al
ulus redu
tion. In Seventeenth Annual Symposiumon Prin
iples of Programming Languages (POPL '90), pages 16{46, San Fran
is
o, California, 1990.ACM Press.[10℄ S. Lippi. En
oding left redu
tion in the lambda-
al
ulus with intera
tion nets. Mathemati
al Stru
turein Computer S
ien
e, 12(6), De
ember 2002.[11℄ I. Litovsky, Y.M�etivier, and E. Sopena. Graph relabelling systems and distributed algorithms. InH. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors, Handbook of graph grammars and
omputing by graph transformation, volume 3, pages 1{56. World S
ienti�
, 1999.[12℄ I. Ma
kie. The Geometry of Implementation (an investigation into using the Geometry of Intera
tionfor language implemetation). PhD thesis, Departement of Computing, Imperial College of S
ien
e,Te
hnology and Mede
ine, 1994.[13℄ I. Ma
kie. Intera
tion nets for linear logi
. Theoreti
al Computer S
ien
e, 247:83{140, 2000.[14℄ Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformations,Volume 1: Foundations. World S
ienti�
, 1997.

42

TERMGRAPH 2007

Intensional properties of polygraphs

Guillaume Bonfante1 Yves Guiraud2

INRIA-LORIA
615 rue du Jardin Botanique - BP 101
Villers-lès-Nancy 54602 - FRANCE

Abstract

We present polygraphic programs, a subclass of Albert Burroni’s polygraphs, as a computational model, showing how these
objects can be seen as first-order functional programs. We prove that the model is Turing complete. We use polygraphic
interpretations, a termination proof method introduced bythe second author, to characterize polygraphic programs that
compute in polynomial time. We conclude with a characterization of polynomial time functions.

Keywords: Polygraphs, termination proof, complexity characterization

1 Introduction

Polygraphs are special higher-dimensional categories, introduced by Albert Burroni to pro-
vide a unified algebraic setting for rewriting [3]. For example, any term rewriting system
can be translated into a polygraph which has, in case of left-linearity, exactly the same
properties of termination and confluence [9,5].

Here, we study how these mathematical objects can be used as acomputational model.
Informally, computations generated by a polygraph are doneby a net of cells which indi-
vidually behave according to some local transition rules. This model is close to John von
Neumann’s cellular automata [15] and Yves Lafont’s interaction nets [8] with notable dif-
ferences: while von Neumann’s automata are essentially synchronous, interaction nets and
polygraphs are asynchronous; polygraphs have a much more rigid geometry than interac-
tion nets: the underlying graphs of the formers are directedacyclic graphs, preventing the
”vicious circles” of the latters.

Termgraph rewriting systems provide another model of graphical computation [14]:
it is an extension of term rewriting with an additional operation, sharing, that allows for
a more correct representation of actual computation. The translation of terms into poly-
graphs is close to the one into termgraphs and they seem to have the same properties, as

1 Guillaume.Bonfante@loria.fr
2 Yves.Guiraud@loria.fr, INRIA postdoctoral fellow with the support of the EADS Corporate Research Founda-
tion. This paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

mailto:Guillaume.Bonfante@loria.fr
mailto:Yves.Guiraud@loria.fr

2 POLYGRAPHS AS A COMPUTATIONAL MODEL

suggested by the first results in [7]. For example, let us consider the following term rewrit-
ing rule, used to compute the multiplication on natural numbers: mult(x;succ(y)) !
add(x;mult(x; y)). When applied, this rule duplicates the term correspondingto the ar-
gumentx. In termgraph rewriting, one is able to share it instead, so that there is no need
for extra memory space. This sharing operation can be algebraically formalized as an op-
eration with one input and two outputs, whose semantics is a duplication operation. In
polygraphs, one can have many such operations with many outputs, explicitely represented
and handled.

This is a key fact in our results on implicit computational complexity: indeed, the
interpretations we consider here, calledpolygraphic interpretations[5,7], can reflect the
fact that two outputs of the same operation have some links between them, as we will see
with the example of the list splitting function used in ”divide and conquer” algorithms.
This allows us to give complexity bounds where traditional polynomial interpretations [12]
cannot with the method described in [4,1] or to give better bounds, as indicated here and
in [7]. Moreover, the polygraphic interpretations give separated information on the spatial
and on the temporal complexities of functions.

This document is an overview of ideas and results from a paperby the same authors [2],
containing more comments, technical details and complete proofs. In section2 we intro-
duce the notion of polygraphic program in an informal way, give the corresponding se-
mantics we consider, introduce the leading example we consider, namely the polygraphic
program computing the ”fusion sort” on lists, and prove thatpolygraphic programs form a
Turing complete model of computation. In section3, we recall the notion of polygraphic
interpretation, give examples, define the notion of simple polygraphic program and prove
results on termination of polygraphic programs. In section4, we give polynomial com-
plexity bounds for simple programs and prove that they characterize the classPTIME of
functions computable in polynomial time by a Turing machine.

2 Polygraphs as a computational model

The general definition of polygraph can be found in documentsby Albert Burroni, Yves
Lafont and Franois Mtayer [3,9,13,10,11]. Here we give a rewriting-minded presentation
of a special case of polygraphs, seeing them as rewriting systems on algebraic circuits.

Definition 2.1 A monoidal 3-polygraphis a composite object consisting ofcells, pathsand
compositionsorganized intodimensions.

Dimension 1contains elementary sorts called1-cellsand represented by wires. Their
concatenation?0 yields product types called1-pathsand pictured as juxtaposed vertical
wires. The empty product� is also a1-path, represented by the empty diagram.

Dimension 2is made of operations called2-cells, with a finite number of typed inputs
and outputs. They are pictured as circuit gates, with inputsat the top and outputs at the
bottom. Using all the1-cells and2-cells as generators, one builds circuits called2-paths,
using the following two compositions: ?1=f fg g f g = fg?0

44

2 POLYGRAPHS AS A COMPUTATIONAL MODEL

The constructions are consideredmodulosome relations, including topological deforma-
tion: one can stretch or contract wires freely, move2-cells, provided one does not create
crossings or break wires. Each2-cell and each2-path f has a1-path s1(f) as input, its
1-source, and a1-patht1(f) as output, its1-target. The compact notationf : s1(f)) t1(f)
summarizes these facts.

Dimension 3contains rewriting rules called3-cells. They always transform a2-path
into another one with the same1-source and the same1-target. Using all the1-cells,2-cells
and3-cells as generators, one can build reductions paths called3-paths, by application of
the following three compositions, defined forF going fromf to f 0 andG going fromg tog 0: F ?0 G goes fromf ?0 g to f 0 ?0 g 0; whent1(f) = s1(g), thenF ?1 G goes fromf ?1 g
to f 0 ?1 g 0; whenf 0 = g, thenF ?2 G goes fromf to g 0. These constructions are identified
modulosome relations, given in [6], where their3-dimensional nature was explained. The
relations allow one to freely deform the constructions in a reasonable way: in particular,
they identify paths that only differ by the order of application of the same3-cells on non-
overlapping parts of a2-path. A3-path iselementarywhen it contains exactly one3-cell.
Each3-cell and each3-pathF has a2-paths2(F) as left-hand side, its2-source, and a2-patht2(F) as right-hand side, its2-target. The notationF : s2(F)V t2(F) stands for these facts.

For monoidal3-polygraphs, rewriting notions are defined in a similar way as for term
rewriting systems, with terms replaced by2-paths, reduction steps by elementary3-paths
and reduction paths by3-paths [5]. Hence, anormal formin a polygraphP is a2-pathf
which is the2-source of no elementary3-path. The polygraphP terminateswhen it does
not contain infinite families(Fn)n2N of elementary3-paths such thatt2(Fn) = s2(Fn+1)
for all n. Other rewriting properties, such asconfluenceor convergenceare also defined in
an intuitive way.

Definition 2.2 A polygraphic programis a monoidal3-polygraph such that:� Its 2-cells are divided intostructure 2-cells, constructorsand functions. The structure2-cells consist of one : � ?0 �) � ?0 � for each pair of1-cells (�; �), plus one: �) � ?0 � and one : �) � for each1-cell �. The constructors are2-cells such
with a1-cell as1-target. The functions are any2-cells.� Its 3-cells are divided betweenstructure 3-cellsandcomputation 3-cells. The structure3-cells are given, for every constructor : x) � and every1-cell �, by:x �� � � x� � x� � x� � xV V V V xx �� � x�� �
The2-targets of the3-cells of�23 use structure2-paths built from the structure2-cells by
using the following structural induction rules:

�� � = ��� = � =� ?0 x� � � x x ?0 � x �� = �= = �x=x ?0 � � ��x � x ?0 � =
The computation3-cells are3-cells whose2-source is of the shapet ?1 ', with ' a
function 2-cell andt a 2-path built only with1-cells and constructors. Furthermore,
there is a finite constant that bounds the number of structure2-cells in the2-target of

45

2 POLYGRAPHS AS A COMPUTATIONAL MODEL

each computation3-cell.� For the present study, we assume that there exists a procedure to perform each step of
computation: more formally, for every3-pathF : f ! g containing exactly one3-cell,
the map givingg from (f; F) is computable in polynomial time.

Example 2.3 We consider the following polygraphic program with one1-cell, two con-
structors and , two functions and and four computation3-cells (we do not give
the structure cells): VV V V
With the constructors, one can represent the natural numbern, using for 0 and for the
successor operation, yielding a2-pathtn with zero input and one output. Furthermore, one
can check that this polygraph is convergent and that, giventm andtn, the normal form of(tm ?0 tn) ?1 is tm+n, while the one of(tm ?0 tn) ?1 is tmn.

Hence this polygraphic program computes the addition and the multiplication on natural
numbers: the1-cells are the data types, the2-paths�) � built only from constructors are
the values, while the result of the application of a functionwith n inputs to well-typed
values(t1; : : : ; tn) is the normal form of the2-path(t1 ?0 � � �?0 tn)?1 . This semantical
interpretation is formalized thereafter.

Definition 2.4 [Semantics] Let us fix a polygraphic programP. If � is a1-cell, a term of
type� is a 2-path built only with constructors and with� as1-target. Avalueor closed
term is a term with no input. The set of values with type� is denoted byV(�). Thedomain
of computationof P is the multi-sorted algebra made of the family of all the setsV(�)
equipped with the operations given, for each constructor
 : �1 ?0 � � � ?0 �n) �, by the
map still denoted by
:
 : V(�1)� � � � � V(�n)! V(�)(t1; : : : ; tn) 7! (t1 ?0 � � � ?0 tn) ?1
:
Let us consider a functionf from V(�1) � � � � � V(�m) to V(�1) � � � � � V(�n). ThenP
computesf if there exists a2-path, still denoted byf, from�1 ?0 � � �?0�m to �1 ?0 � � �?0 �n,
such that, for every family(t1; : : : ; tm) of values inV(�1)�� � ��V(�m), the2-path(t1 ?0� � � ?0 tm) ?1 f normalizes into the familyf(t1; : : : ; tm) of values inV(�1)� � � � � V(�n).
Example 2.5 Let us consider a polygraphic program that computes, among other func-
tions, thefusion sortfunction on lists of natural numbers. It has two1-cells, nat for
natural numbers andlist for lists of natural numbers. Its other cells, apart from structure
ones are:� Constructors: onen : �) nat for each natural numbern, plus : �) list for the

empty list and : nat ?0 list) list for the list constructor.� Functions: the main : list) list for fusion sort, together with : list)
list ?0 list for splitting lists and : list ?0 list) list for merging them.

46

2 POLYGRAPHS AS A COMPUTATIONAL MODEL� Computation3-cells: VV V VV V p > qp q p q p qVV pqVp � q V
Note that the last two rules for the function are not conditional: there is exactly one of
them for each pair(p; q) of natural numbers, depending ifp � q orp > q. However, these
two conditions are computable (in linear time), preventingsuper-Turing computations. We
have chosen a simplified representation of natural numbers which considers them as being
predefined, at the ”hardware level”, together with their predicate�. The reason for this
choice is to postpone the study of modularity and of theif-then-else construction to
subsequent work.

Theorem 2.6 Polygraphic programs form a Turing-complete model of computation.

Proof. Here we give a sketch of the proof, while the complete one can be found in [2].
Any Turing machine can be translated into a polygraphic program whose values are the
words written in the alphabet of the machine and whose functions are the transitions steps
generated by the machine transition function. More formally, the considered polygraphic
program has one1-cell, plus:� Constructors: one : 0) 1 for the empty word plus onea : 1) 1 for each lettera.� Functions: one : 1 V 1 for the function to be computed plus onestepq;a = q a :2) 1 for each stateq and each lettera, including the blank symbol℄.� Computation3-cells are given thereafter, the first rule initializing thecomputation, the

four subsequent families replicating the transitions of the Turing machine and the final
family starting the computation of the result:V

both whenÆ(q; a) = (q 0;
; L)
both whenÆ(q; a) = (q 0;
; R)V VVb V

V
b

bb ℄aqf a
q0 ℄
q q 0qq a a q 0q a ℄q 0q 0

Let us asume that the machine is in a stateq, reading a lettera, with wl andwr the two
words respectively written on the left ofa, from right to left, and on the right ofa, from left

to right. Then, this state of the system is represented by the2-path(wl ?0wr)?1 q a . It is

47

3 POLYGRAPHIC INTERPRETATIONS AND SIMPLE PROGRAMS

straightforward to check that each step of the Turing machine corresponds to an elementary3-path of its polygraphic version. 2
3 Polygraphic interpretations and simple programs

Intuitively, a polygraphic interpretations sees2-paths as electrical circuits, whose com-
ponents are their2-cells. The circuits have currents plugged into their inputs, and these
currents propagate into the circuits according to the ”current maps”'� associated to each2-cell '. A circuit produces heat, given by the sum of the ”heat maps”['℄ of the2-cells
it is made of. In the case of polygraphic programs, we will seethat current and heat maps
can be used to give information respectively on the spatial size and on the temporal size of
computations. Polygraphic interpretations have been introduced, in a more general version,
in [5].

Definition 3.1 A polygraphic interpretationof a polygraphic programP consists into a
mapping of each2-pathf with m inputs andn outputs onto two monotone mapsf� = f :Nm ! Nn and[f℄ = f : Nm ! N, such that the following conditions are satisfied:� For every1-pathx of lengthn, we havex� = IdnN and[x℄ = 0.� For every2-pathsf andg, the following equalitities hold when defined:gf ?1 g+f gf ?0 g = =f gf ?0 g = ff ?1 g = + fgf
Given an interpretation and a2-cell ', we denote by'j� the jth component of the map'�.
An interpretation ofP generates a binary relation denoted by�: it is defined, on2-pathsf
andg with the same2-source and the same2-target, byf � g when the two inequalitiesf�(i) � g�(i) and[f℄(i) > [g℄(i) hold for every possible familyi of natural numbers. An
interpretation iscompatiblewith a 3-cell � whens2(�) � t2(�) andweakly compatible
with � if s2(�) � t2(�).
It was proved in [5] that an interpretation is entirely determined by its values on the2-cells
of the polygraph, that the binary relation� is a terminating strict order and that context are
strictly monotone with respect to it. These are steps towards:

Theorem 3.2 ([5]) If a polygraphic program admits an interpretation which is compatible
with all of its3-cells, then it terminates.

Example 3.3 Let us assume that we have a current map(�)� on a polygraphic program
such that the following conditions hold:� If is a constructor withn inputs, then �(i1; : : : ; in) > i1 + � � � + in.� One structure2-cells, we have �(i; j) = (j; i) and �(i) = (i; i).
We define a heat map[�℄S as follows:� If is a constructor or a function, then

� �S = 0.� On structure2-cells, we have
� �S (i; j) = ij, � �S (i) = i2 and

� �S (i) = i.
It is proved in [2] that these values generate a polygraphic interpretation compatible with

48

3 POLYGRAPHIC INTERPRETATIONS AND SIMPLE PROGRAMS

the structure3-cells. Hence theorem3.2 tells us that a polygraphic program without com-
putation3-cell terminates.

Definition 3.4 Given a current map(�)� on a polygraphic program that satisfies the condi-
tions of example3.3, the heat map[�℄S is calledstructure heatgenerated by(�)�.
Definition 3.5 We denote byN[x1 ; � � � ; xn℄ the algebra of polynomials inn variables and
coefficients inN. Let P be a polygraphic program. A polygraphic interpretation issimple
when the following conditions are met:� For any2-cell' with m inputs andn outputs, the maps

Pnj=1'j� and['℄ are polynomi-
als ofN[x1 ; : : : ; xm℄.� If
 is a constructor withn inputs, then
� =Pmi=1 xi + a
 with 1 � a
 < a, wherea
is a constant depending on the program. Moreover,[
℄ = 0.� On structure2-cells, one has (i; j) = (j; i) and (i) = (i; i). Moreover, structure
cells produce no heat:

� � (i) = 0; � � (i; j) = 0; � � (i) = 0.� For every function' with m inputs andn outputs and for every family(i1; : : : ; im) of
natural numbers, we have

Pnj=1'j�(i1; : : : ; im) � i1 + � � � + im.

A polygraphic program is calledsimplewhen it admits a simple polygraphic interpretation
which is compatible with all of its computation3-cells.

Theorem 3.6 A simple polygraphic program terminates.

Proof. Let P be a simple polygraphic program and let(�)� and[�℄ be the current and heat
maps of a simple interpretation, compatible with all the computation3-cells ofP. It is a
direct computation to check that such an interpretation is weakly compatible with the struc-
ture3-cells ofP. Hence, we deduce thatP terminates if and only if the polygraphic programQ does, whereQ is built fromP by removal of the computation3-cells. The map(�)� also
satisfies the conditions to generate a structure heat map[�℄S proving the termination ofQ.2
Example 3.7 Let us prove that the polygraphic program of example2.5 is simple. Let us
consider the interpretation generated by these values:� n � = 1, � = 1, �(i; j) = i+ j + 1;� �(i) = i, �(i) = (di=2e ; bi=2
), �(i; j) = i+ j;� � � (i) = 2i2, � � (i) = i, � � (i; j) = i+ j.
We have used the notationsd�e andb�
 for the rounding functions, respectively by excess
and by default. This interpretation meets the conditions ofdefinition 3.5 and, thus, is
simple. Now, one has to check that it is compatible with all the computation3-cells: we
give some of the computations for the last3-cell of the function . Let us start with(�)�.
On one hand: !� (i; j; k) = � �� �i; �(j; k)� = � Æ � �i; �(j; k)� = i+ j+k+ 2:

49

4 COMPLEXITY OF SIMPLE PROGRAMS

And, on the other hand:0BB� 1CCA� (i; j; k) = i+ j+ dk=2e + bk=2
+ 2 = i+ j+ k+ 2:
Now, let us consider[�℄. For the2-source of the3-cell, one gets:" # (i; j; k) = � � (i+ j+ k+ 2) = 2 � (i + j+ k+ 2)2:
And, for its2-target,

2664 3775 (i; j; k) is equal to:� � (k) + � � (i+ dk=2e+ 1) + � � (j + bk=2
+ 1) + � � (i+ dk=2e+ 1; j + bk=2
+ 1)= 2 � (i+ dk=2e+ 1)2 + 2 � (j + bk=2
+ 1)2 + i+ j+ 2k+ 2:
We conclude by considering two cases, depending on the parity of k.

Example 3.8 For the polygraphic program of example2.3, the following values generate
a simple interpretation which is compatible with the four computation3-cells:� � = 1, �(i) = i+ 1, �(i) = (i; i), �(i; j) = i+ j, �(i; j) = ij;� � � = � � (i) = � � (i) = � � (i) = 0,

� � (i; j) = i, � � (i; j) = (i+ 1)j.
4 Complexity of simple programs

Definition 4.1 Let P be a polygraphic program. Iff is a 2-path ofP, we denote byjjfjj
the number of2-cells f is made of. IfF is a3-path ofP, we denote byjjjFjjj the number of3-cellsF is made of.

LetP be a simple program with a fixed interpretation made of(�)� and[�℄. We want to prove
that (�)� is a good estimation of the size of values computed byP, given byjj�jj, while [�℄
is one for the size of the computations, given byjjj�jjj. Once again, the complete proofs are
in [2]. By induction on the size of values, we prove that(�)� is an estimation of the size of
values:

Lemma 4.2 For every valuet, the inequalitiesjjtjj � t� � a jjtjj hold inN.

Using the properties of the polygraphic interpretation we consider and lemma4.2, we prove
that the size of intermediate and of final values are bounded by a polynomial in the size of
the initial values:

Proposition 4.3 Let ' be a function withm inputs andn outputs. LetP' be the poly-
nomial inN[x1 ; : : : ; xm℄ defined byP' = Pnj=1'j�(ax1; : : : ; axm). Let t be a family of
values of types1(') and let us assume thatt?1' reduces into a2-path of the shapeu?1
,

50

4 COMPLEXITY OF SIMPLE PROGRAMS

whereu hasp outputs. Then the inequality
Ppj=1 uj� � P'(jjt1jj ; : : : ; jjtmjj) holds. In

particular, if u = '(t), the inequalityjj'(t)jj � P'(jjt1jj ; : : : ; jjtmjj) holds.

Example 4.4 If one computes these polynomials for the simple polygraphic program of
example2.5, one sees that, for any listt, the sorted list (t) and all the intermediate values
computed to reach the result have their sizes bounded by the size of t:P (x) = �(1 � x) = x, P (x; y) = �(1 � x; 1 � y) = x+ y,P (x) = 1�(1 � x) + 2�(1 � x) = dx=2e+ bx=2
 = x.

For the polygraphic program of example2.3, one getsP (x; y) = x + y andP (x; y) =xy. Hence, the current maps give us information on the spatial complexity of the computa-
tion, separated from the length of computations.

Now we interest ourselves into polynomial bounds for the length of computations. We start
by a technical lemma, which proves that, during a computation, the potential structure heat
increase due to the application of a computation3-cell is polynomially bounded by the size
of the arguments.

Lemma 4.5 We denote byK the constant bounding the number of structure2-cells in the2-target of every computation3-cell. Let' be a function withm inputs. We denote byS'
the polynomialK � P2'. Let t be a family of values of types1('), let f andg be 2-paths
such thatt ?1 ' reduces intof which itself reduces intog by application of a computation
rule �. Then the following inequality holds:[f℄S + S'(jjt1jj ; : : : ; jjtmjj) � [g℄S:
Proof. The complete, technical proof is in [2]. Here we recall the main reasoning steps. We
denote by� : aV b the computation3-cell used to reducef intog. We decomposef andg
to makea andb appear and use the properties of current and heat maps to conclude that
the inequality[f℄S + [b℄S(i1; : : : ; im) � [g℄S holds, for some natural numbersi1, : : : , im.
Then we prove that[b℄S(i1; : : : ; im) is polynomially bounded by the size oft. By definition
of the structure heat,[b℄S(i1; : : : ; im) is the sum of all the structure heats produced by
the structure2-cellsb is made of. Then we use proposition4.3 to prove that the current
incoming in each input of each structure2-cell of b is bounded byP'(jjt1jj ; : : : ; jjtmjj).
Then, by definition of[�℄S on structure2-cells, we conclude that the structure heat produced
by each one is at mostP2'(jjt1jj ; : : : ; jjtmjj). Finally, we use the fact thatb is the2-target of
a computation3-cell to deduce that there is at mostK structure2-cells inb. 2
Example 4.6 For the polygraphic program of example2.5 we haveK = 1, S (x) = x2,S (x) = x2 andS (x; y) = (x + y)2. For the one of example2.3, we haveK = 1,S (x; y) = (x+ y)2 andS (x; y) = x2y2.
Now let us prove that the length of a computation is polynomially bounded by the size of
the arguments.

Proposition 4.7 Let' be a function withm inputs. We define the following polynomials:Q'(x1; : : : ; xm) = ['℄(ax1; : : : ; axm) and R' = Q' � (1 + S'):
51

4 COMPLEXITY OF SIMPLE PROGRAMS

Let t be a family of values of types1('), let F be a3-path with2-sourcet ?1 ', made ofk
computation3-cells andl structure3-cells. Then the following inequalities hold:k � Q'(jjt1jj ; : : : ; jjtmjj)) and l � Q'(jjt1jj ; : : : ; jjtmjj)) � S'(jjt1jj ; : : : ; jjtmjj)):
As a consequence,jjjFjjj � R'(jjt1jj ; : : : ; jjtmjj) holds.

Proof. We decomposeF into a?2-composite of elementary computation3-paths followed
by structure3-paths. Using the fact that the heat map we consider is strictly decreasing on
computation3-cells and weakly decreasing on structure3-cells, we deduce that[t ?1 '℄ is
minored byk. We use the properties of[�℄ and lemma4.2 to get the bound we seek onk.
Then, we apply proposition4.7 to each of the structure3-paths we have isolated. We sum
up the resulting inequalities and use the facts that[t ?1 '℄S = 0 and [t2(F)℄S � 0 to getk � S'(jjt1jj ; : : : ; jjtmjj) � l. We deduce the inequality onl from this one and the one onk.
We conclude by using the equalityjjjFjjj = k+ l. 2
Example 4.8 For the functions of example2.5, we haveQ (x) = 2x2, Q (x) = x andQ (x; y) = x + y. For example, let us fix a listt. The polynomialQ tells us that,

during the computation of the sorted list(t), there will be at mostjjtjj applications of a
computation3-cell. The polynomialR guarantees that there is no more thanjjtjj2 (1+jjtjj2)
applications of rules. On the examples we have considered, the polynomialQ' gives a
bound that is close to known ones but the polynomialR' gives a very overestimated bound.
To get a better estimation, we will have to work on the structure heat increase boundS'.

Theorem 4.9 Functions computed by simple polygraphic programs are exactly PTIME

functions.

Proof. We start by proving that functions computed by simple polygraphic programs are in
PTIME. Proposition4.7 tells us that the length of any computation in such a polygraph are
polynomially bounded by the size of the arguments. Furthermore, each step of computation
can be done in polynomial time with respect to the size of the current2-path: we find a redex
in a directed acyclic graph with decorations then replace itby the corresponding reduce and
both operations can be done in polynomial time.

Now let us prove that anyPTIME function can be computed by a simple polygraphic
program. The first step is to translate a Turing machine equipped with a clock into a poly-
graphic program. We fix a functionf in PTIME, a Turing machineM that computesf
and a polynomialP that bounds the length of the computation. We consider a copyof the
polygraphic program of example2.3which computes addition and multiplication of natural
numbers, with its1-source denoted bynat. Let us note that this polygraphic program com-
putes any polynomials, includingP. Then we extend it with a variant of the polygraphic
Turing machine of section2, made of a1-cell mon; its constructors are the empty word: mon) mon and each lettera : mon) mon of the alphabet ofM; its functions are
the main : mon) mon for f, plus a size function : mon) nat, plus the modifiedq a : nat ?0 mon ?0 mon) mon for each stateq of M and each lettera in the alphabet
of M, including the blank symbol℄; its computation3-cells are:

52

4 COMPLEXITY OF SIMPLE PROGRAMSVb

b

 both whenÆ(q; a) = (q 0;
; L)
both whenÆ(q; a) = (q 0;
; R)VV VV

V P V a V℄ a
q aq a q 0 b q 0q a q 0 ℄q a q 0 b ℄

q0 qf
Then, one checks that this polygraphic program mimics the transition of the original Turing
machineM and, thus, computesf. We conclude by checking that the following polygraphic
interpretation, extending the one already built on naturalnumbers, is simple and compatible
with each computation3-cell:� � = 1, a �(i) = i+ 1, �(i) = i, q a �(i; j; k) = i+ j+ k, �(i) = P�(i) + i+ 1.� � � (i) = i, h q a i (i; j; k) = i, � � (i) = [P℄(i) + P�(i) + i+ 1. 2
References

[1] Guillaume Bonfante, Adam Cichon, Jean-Yves Marion and Hlne Touzet,Algorithms with polynomial interpretation
termination proofs, Journal of Functional Programming 11 (2001), no. 1, 33–53.

[2] Guillaume Bonfante and Yves Guiraud,Programs as polygraphs: computability and complexity, Submitted, 2006.

[3] Albert Burroni, Higher-dimensional word problems with applications to equational logic, Theoretical Computer
Science 115 (1993), no. 1, 43–62.

[4] Adam Cichon and Pierre Lescanne,Polynomial interpretations and the complexity of algorithms, Lecture Notes in
Artificial Intelligence 607 (1992), 139–147.

[5] Yves Guiraud,Termination orders for 3-dimensional rewriting, Journal of Pure and Applied Algebra 207(2006), no. 2,
341–371.

[6] , The three dimensions of proofs, Annals of Pure and Applied Logic 141 (2006), no. 1-2, 266–295.

[7] , Polygraphs for termination of left-linear term rewriting systems, Submitted, 2007.

[8] Yves Lafont,Interaction nets, Principles of Programming Languages, ACM Press, 1990, pp.95–108.

[9] , Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184 (2003), no. 2-3,
257–310.

[10] , Algebra and geometry of rewriting, Preprint IML, 2006.

[11] Yves Lafont and Franois Mtayer,Polygraphic resolutions and homology of monoids, Preprint IML, 2006.

[12] Dallas Lankford,On proving term rewriting systems are noetherian, Tech. report, Louisiana Tech University, 1979.

[13] Franois Mtayer,Resolutions by polygraphs, Theory and Applications of Categories 11 (2003), 148–184.

[14] Detlef Plump,Term graph rewriting, Handbook of Graph Grammars and Computing by Graph Transformation 2 (1999),
3–61.

[15] John von Neumann,Theory of self-reproducing automata, University of Illinois Press, 1966.

53

TERMGRAPH 2007

Rewritings for Polarized Multipli
ative andExponential Proof Stru
turesChristophe Fouqueré1 ;2LIPN-UMR7030Université Paris 13, CNRSVilletaneuse, Fran
eVirgile Mogbil1 ;3LIPN-UMR7030Université Paris 13, CNRSVilletaneuse, Fran
eAbstra
tWe study
onditions for a
on
urrent
onstru
tion of proof-nets in the framework of linear logi
 followingAndreoli's works. We de�ne spe
i�

orre
tness
riteria for that purpose. We �rst study the multipli
ative
ase and show how the
orre
tness
riterion given by Danos and de
idable in linear time, may be extendedto
losed modules (i.e. validity of polarized proof stru
tures). We then study the exponential
ase and givea
orre
tness
riterion by means of a
ontra
tion relation that helps to dis
over frontiers of exponentialboxes.Keywords: linear logi
, proof-nets, logi
 programming, fo
alization.1 Introdu
tionGirard in his seminal paper [9℄ gave a parallel syntax for multipli
ative linear logi
(MLL) as oriented graphs
alled proof-stru
tures. Let us re
all that a MLL formulais either an atomi
 formula A, a negation of an atomi
 formula A?, or built with abinary
onne
tive
 or P. In the original de�nition, a proof-stru
ture for MLL is
onstru
ted by means of the following binary links:
-link: A BA
B
 P-link: A BA P BP axiom-link: A A?1 Partially supported by ACI NIM proje
t Géométrie du Cal
ul (GEOCAL), Fran
e.2 Email:
f�lipn.univ-paris13.fr3 Email: vm�lipn.univ-paris13.frThis paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

mailto:cf@lipn.univ-paris13.fr
mailto:vm@lipn.univ-paris13.fr

Fouquere and Mogbilwhere every o

urren
e of formula is a premise of at most one link and is a
on
lusionof exa
tly one link. A
orre
tness
riterion enables one to distinguish sequentializ-able proof-stru
tures (the so
alled proof-nets) from "bad" stru
tures (that do not
orrespond to proofs in the sequent
al
ulus). After Girard's long trip
orre
tness
riterion, numerous equivalent properties were found. In parti
ular, Danos andRegnier [7℄ proved that swit
hed proof-stru
tures should be trees, where swit
hingis done by deleting one of the premises of ea
h P-link. Danos [6℄ showed that it isthe
ase i� the proof stru
ture rewrites to � (
 is
alled a
ontra
ted node):(1)
 �! (2) �! (3) P �! (4) P �!While a lot of resear
h has been done on �nding e�
ient
orre
tness
riteria for MLL,it still remains to study
orre
tness
riteria in
ase of polarized proof-stru
tures inMLL, and broaden it to the exponential
ase. First used by Andreoli in Logi
Programming [1℄ and also
onsidered in Girard's works [10℄ and in Laurent's worksabout Polarized Linear Logi
 [13℄, this
on
ept of polarization allows to
onsider
lustered stru
tures. Re
ently, polarized proof stru
tures arose naturally in logi
programming models [2,3,4℄. The basi
 obje
ts we
onsider are then proof stru
tureswith two strata we
all elementary bipolar modules, that may be
omposed to getmodules. We re
all the multipli
ative
ase in the following se
tion (the reader may�nd in [8℄ extension to open modules). We de�ne a
orre
tness
riterion that takes
are of the parallel stru
ture of modules, extending the Danos
riterion. In se
tion 3,we analyze how modules may be generalized to take
are of exponentials.2 The multipli
ative
aseWe
onsider in this se
tion the extension MLLu of MLL with 1 the unit of
.Formulae F of MLLu are given by the following grammar (we allow 1 either aloneor as part of a tensor):F := 1 j GG := A j A? atomi
 formula or its negationj G
 1 j 1
G j G
G j G P GA binary sequent
al
ulus for MLLu is given in Fig. 1. Let PS be the dire
tedgraphs where edges are labelled by formulae of MLLu and built with the followinglinks (n � 1):
-link: A1
 � � �
An
A1 An P-link: A1 P : : : P AnPA1 An axiom-link: A A? 1-link: 11possibly with edges pending downwards. Elements of PS are still
alled proof stru
-tures. Formulae labelling pending edges are the
on
lusions of the proof stru
ture,nodes with pending edges are
alled
on
lusion nodes. A proof stru
ture is sequen-tializable if the sequent de�ned with the
on
lusions of the proof stru
ture is provable55

Fouquere and Mogbil` A?; A (axiom) ` 1 (1) ` �; A ` A?;�` �;� (
ut)` �; G1 ` G2;�` �; G1
G2;� (
) ` G1; G2;�` G1 P G2;� (P)Fig. 1. Binary sequent
al
ulus for MLLu.in MLLu. A sequentializable proof stru
ture is
alled a proof-net. Labels on edgesare omitted when
lear from the
ontext.Proposition 2.1 Let � be a proof stru
ture of PS, � is a proof-net (i.e. sequen-tializable) i� � !� � where ! is given by the following rules:(1)
 �! (2) �! (3) 1 �!(4) P �! (5) P �! (6) P �!In
ase (4), there must exist at least one edge between the two nodes.The proof of the proposition follows from the standard one on binary proofstru
tures for MLL [6℄, and the following remarks:
 and P are asso
iative and
ommutative, the 1-ary P
onne
tive is by
onvention the identity, 1 is a unit for
.We �rst give the de�nition of an elementary bipolar module (EBM) and give the
orresponden
e with proof stru
tures. We then de�ne a module as the
omposition ofEBMs. A module is
orre
t if the
orresponding proof stru
ture is sequentializable.De�nition 2.2 [EBM℄ An EBM M is given by a �nite set H(M) of propositionalvariables (
alled hypotheses) hi and a non empty �nite set C(M) varying over k of�nite sets Ck(M) of propositional variables (
alled
on
lusions)
jk. Variables aresupposed pairwise distin
t. 4 The set of propositional variables appearing in M isnoted v(M). It is denoted as a dire
ted graph with labelled pending edges and twokinds of nodes, one positive pole under a non-empty �nite set of negative poles:
j11
jKKhiThe set of pending edges of an EBM M is
alled the border b(M).The proof stru
ture
orresponding to an EBM is given by the following transfor-mation on poles. The
onverse transformation requires the de�nition of BMs de�nedlater. if Ck(M) = ;: ! 1 , if Ck(M) 6= ;:
jkk ! Pz }| {
jk?k4 This restri
tion is taken for simpli
ity. The framework
an be generalized if we
onsider multisets (ofhypotheses and
on
lusions) instead of sets, and add as required a renaming me
hanism: the results in thispaper are still true. 56

Fouquere and Mogbil
hi !
z}|{hiAn EBMM may be equivalently de�ned as a (type) formula t(M) in the dual lan-guage of MLLu (re
all that A(B = A? P B): t(M) = (Ni hi)((�k(Njk
jkk)),where we use the
onvention that�k Fk =Nk Fk = F1 when the domain of k is of
ardinal 1, and if the domain of i is empty, (Ni hi)(C = C and if the domain ofjk for some k is empty, (Njk
jkk) = ?. The reader should
are that this supposesa bilateral sequent
al
ulus, although the logi
al reading of an EBM (or of a proofstru
ture) is unilateral. Three kinds of EBMs are of spe
ial interest: An EBM isinitial (resp. �nal) if its set of hypotheses is empty (resp. its set of
on
lusions isempty). An EBM is transitory if it is neither initial nor �nal. Initial EBMs allowto de
lare available resour
es, though �nal EBMs stop part of a
omputation bywithdrawing a whole set of resour
es. Transitory EBMs are
alled de�nite
lausesin standard logi
 programming.De�nition 2.3 [BM℄ A bipolar module (BM) M is de�ned with hypotheses H(M),
on
lusions C(M), and type t(M), indu
tively in the following way:� An EBM is a BM.� Let M be a BM, and N be an EBM, let I = C(M)\H(N), their
omposition wrtthe interfa
e I,MÆIN is a BM with the multiset of hypothesesH(M)[(H(N)�I),the multiset of
on
lusions (C(M)�I)[C(N), the type t(M)
 t(N) and variablesv(M) [v(N).The interfa
e will be omitted when it is
lear from the
ontext. Note that theinterfa
e may be empty. The translation from proof stru
tures of PS to BMs isgiven by the two following rules, plus rules not expli
ited here due to la
k of spa
ethat take
are of polarity (a unary tensor node (resp. Par) is added in betweenif (resp. a negation of) a propositional variable is a premise of a Par node (resp.tensor)) and the
onstant 1:

P
z }| {� �! P p? p
z}|{� where p is a fresh atomi
 for-mula

z}|{hi 1 1Pz }| {
j1?1 Pz }| {
jK?K �!
j11
jKKhiConsidering BMs in pla
e of proof stru
tures for MLLu has valuable
onsequen
esin terms of simpli
ity of
orre
tness
riteria as one
an take
are of the bipolestru
ture of BMs more dire
tly than it is the
ase with a binary stru
ture.De�nition 2.4 [Corre
tness (wrt sequentialization)℄ Let M be a BM, M is
orre
tif the
orresponding proof stru
ture in PS is sequentializable.57

Fouquere and Mogbilz }| {�� z }| {
Æ �!! z }| {� z }| {
� Æ
� � z }| {
Æ �!! � � z }| {
ÆFig. 2. Big step redu
tion relation.Sequentialization means that there exists a formula C built with the
onne
tives
 and P, and the variables C(M) su
h that the sequent H(M); t(M) ` C is provablein Linear Logi
.A
losed module is a BM without any pending edges, i.e. with the sets of hy-potheses and
on
lusions empty. Corre
tness of
losed modules may be tested eitherin terms of provability in a sequent
al
ulus or by means of
orre
tness
riteria forproof stru
tures. In the following, we
onsider the
orre
tness
riteria of Danos [6℄using a
ontra
tion relation and explained in the previous se
tion, and also the onegiven by Danos and Regnier [7℄ that uses swit
hings: let � be a proof stru
turewith binary links and S(�) the set of (swit
hed) graphs obtained from � by remov-ing exa
tly one premise edge for ea
h P link, � is a proof net i� ea
h graph inS(�) is a
y
li
 and
onne
ted. One generalizes this de�nition to n-ary
onne
tivesby introdu
ing generalized swit
hes: ea
h n-ary P
onne
tive indu
es n swit
hedgraphs. One still
an de�ne swit
hed proof-stru
tures and a
riterion generalizingDanos-Regnier
orre
tness
riterion on PS: a proof stru
ture � is a proof net i�the graphs in S(�) are a
y
li
 and
onne
ted. A
losed module M is DR-
orre
t ifthe proof stru
ture M� asso
iated to M is a proof net wrt the previous
riterion.We abusively refer to the module M instead of the
orresponding proof stru
tureM� in the following, speaking of for instan
e swit
hed module instead of swit
hedproof stru
ture. We immediately have the following proposition as a
orollary of theDanos and Regnier
riterion theorem:Proposition 2.5 Let M be a
losed module, M is
orre
t i� M is DR-
orre
t.We give below a (big step) redu
tion relation that takes
are of the fo
alizationproperty. Though a Danos-like relation would redu
e ea
h step one variable, ourformulation uses as a whole the stru
ture of a module thanks to fo
alization. Thefo
alization property states that a sequent is provable i� there exists a proof su
hthat de
omposition of the positive stratum of formulae is done in one step. Consid-ering bipolar modules, it means that one may de�ne a redu
tion relation su
h thatea
h step redu
es one positive-negative pair of nodes.Proposition 2.6 (Stability) Let M and N be two
losed modules su
h that M �N , M is
orre
t i� N is
orre
t (see Fig. 2).Proof. One
an de�ne a fun
tion from the swit
hed stru
tures of the module onthe left of the relation onto the swit
hed stru
tures asso
iated to the module on theright su
h that a swit
hed stru
ture from the left is a
y
li
 (resp.
onne
ted) i� the
orresponding swit
hed stru
ture from the right is a
y
li
 (resp.
onne
ted). 2Theorem 2.7 (
orre
tness) A
losed module M is
orre
t i� M !!� [?O.58

Fouquere and MogbilProof.� Suppose M !!�[?O. As[?O is
orre
t, by prop. 2.6, we dedu
e that M is
orre
t.� Suppose M is
orre
t. Let N be a normal form of M wrt !!, then by proposi-tion 2.6, N is
orre
t. Let us de�ne a partial relation on negative poles of N : letm and n be two negative poles, m < n if 9p a positive pole su
h that m is linkedto the bottom of p and n is linked to the top of p. We
onsider the transitive
losure of this relation. We prove a
ontradi
tion if N is in normal form,
orre
tand di�erent from [?O:� either there is no maximal negative pole. Let us suppose 9m su
h that m < m.Then there exists one
y
le
ontaining m in the module alternating positive andnegative poles. We
an then de�ne a swit
hing fun
tion on the module (
hoosingthe
orre
t links for negative poles) su
h that the swit
hed module has a
y
le.Hen
e
ontradi
tion with the fa
t that N is
orre
t.� or let m be a maximal negative pole and p the
orresponding positive pole.If p has other negative poles, N is not in normal form as we
an omit themaximal negative pole by neutrality.If p has no other negative poles and no in
oming link then N is either equal to[?O or not
onne
ted hen
e not
orre
t.If p has no other negative poles and ea
h in
oming negative pole has at leastone link going to another positive pole, then one
an de�ne a swit
hing fun
tionusing for ea
h of these negative poles one of the links that does not go to p:the swit
hed module is not
onne
ted. Hen
e
ontradi
tion with the fa
t thatN is
orre
t.If p has no other negative poles and there exists one in
oming negative polewith the whole set of links going to p, the �rst rule applies: N is not in normalform. 2Note that this proof extensively uses the bipolar nature of modules. Moreover,the proof may have been given
onsidering minimal poles in pla
e of maximal poles,and for ea
h proof only one of the two redu
tion rules is su�
ient and ne
essary!Finally, the same te
hnique Guerrini [11℄ used for Danos
riterion may be appliedhere to get a linear algorithm. We detailed in another paper the extension of thete
hnique presented before to open modules as it is a ne
essary step towards thespe
i�
ation of a logi
 programming language based on bipolar modules [8℄.3 Dealing with exponentials3.1 Multipli
ative exponential linear logi
 (MELL)Adding exponentials to the language obviously in
reases its expressivity: it allowsfor representing reusable resour
es. In linear logi
, the 'of
ourse' modality ! hasthis main property: !A(A
 � � �
A. Te
hni
ally, three operations are ne
essary:
ontra
tion, dereli
tion and weakening. The �rst operation states that !A is dupli-
able. Dereli
tion allows to
onsider the
lassi
al formula !A as the linear one A.The last operation states that !A may be forgotten. The dual modality 'why not' ?59

Fouquere and Mogbilmay be interpreted in the following way: ?A? waits for the '
lassi
al' resour
e !A.This promotion operation is more
omplex than the other operations: in terms ofproofnets,
orre
tness is assured if a 'box' in the proof net
hara
terizes the
ontext(and this
ontext has to be
orre
t by itself). Entries of su
h a box are given by one! and a set of ?.3.1.1 From MELLu to ?-EBMs.The translation from formulae of MELL to modules is not as easy as it is withoutexponentials. We
onsider an extension MELLu of MELL with the neutral element1 for
, a formula F of MELLu is given by the following grammar:F := 1 j GG := A j A? j G
 1 j 1
G j G
G j G P G j ?G j !GConverting from formulae to modules requires the use of polarization and fo
al-ization. Fo
alization allows to
onsider n-ary
onne
tives. Formulae are polarizednegatively or positively a

ording to their main
onne
tives,
onsidering
onvenientlythat variables A;B; : : : are positive whereas their negations A?; B?; : : : are nega-tive. A pre
ise study of the exponential
onne
tives leads to the a
knowledgmentthat exponential
onne
tives
hange the polarity of formulae: if A is a positive for-mula, ?A is negative whereas !A? is positive. Hen
e exponential
onne
tives may besplit into two parts: !A? = #℄A? and ?A = "[A. The shift
onne
tives # and " dothe
hanging of polarities. The introdu
tion of shift
onne
tives may be generalizedalso to the linear
ase whenever there is a
hange of polarity. The two modalities [and ℄ express exponentiality.We
onsider a slightly di�erent version of a polarized system as it was designedby Boudes [5℄ or Laurent [13℄: the system LLpol given by Laurent takes
are ofmultipli
ative as well as additive
onne
tives where atomi
 formulae are always ex-ponentialized. Following our motivations, our language nMELLpol is restri
ted tothe multipli
ative
ase for simpli
ity and atomi
 formulae may be linear or expo-nential. Finally we use n-ary
onne
tives and the de
omposition of exponentials isexpli
it. The grammar for nMELLpol is given in the following way where the set offormulae is expli
itly split into positive (P; : : :) and negative (N; : : :) formulae (Ais a positive atomi
 formula):8<:P := Ni2I �i j [(Ni2I �i)� := A j #N 8<:N := Pk2K �k j ℄(Pk2K �k)� := A? j "PWe keep as
onvention that a 1-ary tensor is the identity and a 0-ary tensor isthe tensor unit 1. Moreover, one
an remark that de�ning 1 as #℄>, where > isthe neutral for the additive
onne
tive & , is
oherent with our setting and may beuseful when extending our framework to additives. Nevertheless, in the following,the standard rule for 1 is impli
itly added to the
al
uli. One
an de�ne a n-aryfo
alized sequent
al
ulus (A is an atomi
 formula) as in Fig. 3. Sequents
ontain adistinguished pla
e between ` and ; , they are in one of the two following forms:60

Fouquere and Mogbil` ; A?; A; [� (axiom) ` 1; [� (1) ` ; �; A; [� ` ; A?;�; [�` ; �;�; [� (
ut): : : ` Ni ; �i; [� : : : ` ; Aj;�j ; [� : : :` ; Ni2I #Ni Nj2J Aj;�1; : : : ;�jIj;�1; : : : ;�jJj; [� (
): : : ` Ni ; [(Ni2I #Ni Nj2J Aj);�i; [� : : : ` ; [(Ni2I #Ni Nj2J Aj); Aj ;�j ; [� : : :` ; [(Ni2I #Ni Nj2J Aj);�1; : : : ;�jIj;�1; : : : ;�jJj; [� ([
)` ; P1; : : : ; PjIj; A?1 ; : : : ; A?jJj;�`Pi2I "Pi Pj2J A?j ; � (P) ` ; P1; : : : ; PjIj; A?1 ; : : : ; A?jJj; [�` ℄(Pi2I "Pi Pj2J A?j) ; [� (℄ P)Fig. 3. n-ary sequent
al
ulus for nMELLpol (0-ary tensor is 1).` ; � or ` N ; � where N is a negative non atomi
 formula and � is a multisetof positive formulae or atomi
 negative formulae. The sequent
al
ulus is designedsu
h that, beginning with the distinguished pla
e empty, sear
h for proofs
onsists ofrepeating the de
omposition of a positive formula followed by the de
omposition ofnegative formulae (ne
essarily subformulae of the positive formula just de
omposed),until applying axioms. Note that exponential rules are as possible integrated to linearrules to quotient the sear
h spa
e (e.g. the axiom rule in
ludes ([w), ([
) manages([
)). The following translation (�)� from MELLu to nMELLpol is su
h that if Fis a MELLu formula, `MELLu F is provable i� `nMELLpol F�; is provable:1+ = 1 A+ = A (F1
 F2)+ = F+1
 F+2 (!F)+ = #℄F� F+ = #F�otherwiseA?� = A? (F1 P F2)� = F�1 P F�2 (?F)� = "[F+ F� = "F+otherwiseThe �nal step to get modules
onsists in �attening nMELLpol formulae. Bipolarmodules were previously obtained by adding atomi
 formulae between two strata(say from negative to positive): let P1; P2 be positive formulae, N a negative formula,` P1
 (N P P2) is provable i� ` P1
 (N P Z?); Z
 P2 is provable, where Z is afresh (positive) atomi
 formula. However this prin
iple
annot be fully applied whenexponentials o

ur: try to �atten the (provable) sequent ` A? P "[(B
 C); A
#℄(B? P C?). This
an be over
ome by allowing exponential atomi
 formulae inthe language. These exponential atomi
 formulae are noted with ℄ or [supers
ripts:Z℄ and Z[are respe
tively de�ned as #℄ "Z and "[#Z?. We then
onsider thetranslation (�)Æ: let C be a non-empty
ontext (negative or positive), Z is a freshatomi
 formula C["Ni2I �i℄Æ = C[Z?℄Æ; [ZNi2I �i℄ÆC["[Ni2I �i℄Æ = C[Z[℄Æ; [[(Z℄Ni2I �i)℄Æotherwise (i.e. empty
ontext) P Æ = P;NÆ = #N . We still have if F is a MELLuformula, `MELLu F is provable i� `nMELLpol ;F Æ is provable. We
onsider now drawingsof the following kind we
all ?-EBM: 61

Fouquere and Mogbil℄[℄ ?d

1P! P!

PFig. 4. ?-EBM and proofnets��[℄℄Al;1A0m;1 ��[℄℄Al;kA0m;k[[℄BiPositive and negative poles may now be labelled: a ?-EBM is reusable when [labels its positive part, ℄ labels a promoted variable, bra
kets mean optional. � labelsan exponential atomi
 negative
on
lusion of a ?-EBM and we refer to �-edge in that
ase. Roughly, the
orresponden
e between pla
es of exponentials in formulae andlabelled elements is the following one:!(X (Y) is drawn with the positive pole labelled [: YX[X (!Y is drawn with a �-edge: ���YXX (?Y is drawn with the negative pole labelled ℄: Y℄XThe type of a ?-EBM generalizes the type given for an EBM (bra
kets meanoptional): C = [!℄(Ni2I Bi(Pk2K [?℄ (Nl2L Al;kNm2M Z℄m;k)) . Su
h a type(
lause in logi
 programming terminology)
ould be interpreted as: C is a reusable
lause i� ! is expli
it. The appli
ation of a
lause is allowed if the Bi are available,then one of the
on
lusions is �red, a
on
lusion being a multiset of atomi
 formulaeAl;k or exponential, i.e. reusable, atomi
 formulae Z℄m;k. If the ? modality is present,the multiset of
on
lusions is required to be reusable as a whole: not only these
on
lusions
annot be used with a linear
lause but su
h a
lause
annot use linearhypotheses. For example,
onsider the set of
lauses f1 (A
 B;B (?C; !(A
C) (?g. The
orresponding module we get is drawn in Fig.4 on the left. The�gure on the right is the
orresponding proof-stru
ture (see [9,12℄ for de�nitionsof proof stru
tures with boxes, extended here to n-ary
onne
tives). The traversalof the box without the use of a [-node shows that the sequent is not provable (adereli
tion should have been applied), i.e. the ?-EBM on the left is not
orre
t.62

Fouquere and Mogbil3.1.2 From ?-EBMs to modules.De�nitions given in se
tion 2 for EBMs, that is to say
omposition and
orre
tnessof modules,
annot be straightfully extended to the exponential
ase. Obviously,
omposition should satisfy identi�
ation of variables o

urring on links, noti
ingthat �-edges
an only be linked to �-edges. However,
ontra
tion needs a spe
ialattention. For the following, we
onsider expli
it
ontra
tion: ?-EBMs with positivenodes labelled [, and �-edges are dupli
ated if ne
essary mimi
king the property!A (!A
 A, hen
e the degree of edges is always 1. The de�nition of
ompositiongiven in se
tion 2 is then adapted
onsequently for ?-EBMs labelled [and �-edges.For example, �-edges are dupli
ated as follows:?Z and Z gives ?Z
It is then possible to de�ne the type t(M) of a module M as the formula givenas the Par of the formulae o

urring as ?-EBMs taking
are of possible
ontra
tions.Moreover, it is possible to re
over a proof-stru
ture M� (with, as usual,
ontra
tion,weakening and dereli
tion nodes) from a given module M . Finally, a module is
orre
t if M� is a proofnet.3.2 ?-EBMs and
orresponding
orre
tness
riteriaExtending the language with exponentials yields a major di�
ulty due to the pro-motion rule, as it is inherently
ontextual. Note that allowing [in the language (andex
lude ℄) is su�
ient to embed the framework of the previous se
tions in a program-ming language: one
an
onsider a program as a set of (exponential, reusable) EBMsalong with a multiset of (linear, usable on
e) EBMs. This system already extends
lassi
al logi
 programming in a straightforward way and
orre
tness of modulesis tested with the same redu
tion relation given in previous se
tion, after deleting�-edges (appli
ation of the weakening rule) and by
onsidering that normal formsmay
ontain ?-EBMs. We
onsider for the full language the redu
tion system givenby the following two rules:[℄℄ [℄℄[�� ��℄ [[℄�� �! ℄ ℄[[℄�� �� Label [is put on righthand side if option ispresent on left part[[℄�� ��[[℄�� �! [[℄�� �� Label [is put on righthand side if the two op-tions are present on leftpartPropositions equivalent to the ones given for the multipli
ative
ase may beproved. Obviously, if M is a
losed
orre
t module in this fragment then the moduleforget(M) built from M forgetting exponentials (omitting labels and repla
ing �-63

Fouquere and Mogbiledges by normal edges) is a
losed
orre
t BM. We must also
hara
terize normalforms. We add to the redu
tion system two rules
orreponding to neutrality of 1and weakening of [:[[℄6=; [℄℄ �! [[℄6=; and [[℄℄6=; �!Proposition 3.1 (Stability) Let M and N be two
losed modules su
h that M �!N . The module M is
orre
t i� N is
orre
t.Proof. One
an de�ne a fun
tion from left swit
hed module onto right swit
hedmodule su
h that the relation and its inverse are stable wrt a
y
li
ity,
onne
ted-ness. 2Theorem 3.2 A
losed module M is
orre
t i� M�!�[?O or M�!�[[?O.Proof. The proof used for the linear
ase is adapted here. As the redu
tion rulesare stable wrt
orre
tness, it remains to prove that a
orre
t non-terminal
losedmodule M
an always be redu
ed. We
onsider the same relation as in proof ofTh.2.7. If maximal negative poles do not exist then there exists at least one
y
le inthe forget(M) module alternating positive and negative poles. We
an then de�nea swit
hing fun
tion on this module (
hoosing the
orre
t links for negative poles)su
h that this swit
hed module has a
y
le. Hen
e
ontradi
tion. So let us
onsiderone of the maximal negative poles, and the
orresponding positive pole. We remarkthat su
h a negative pole has no out
oming links (the module is
losed and thenegative pole is maximal). If the positive pole has other negative poles, we
anomit the maximal negative pole by neutrality. Otherwise, let us study the in
omingnegative poles: (1) If there is no su
h in
oming link, then M is the terminal module.(2) If ea
h in
oming negative pole has at least one link a going to another positivepole as in the following �gure: ℄[[℄�� a ��� 0z }| {[℄℄then one
an de�ne a swit
hing fun
tion using for ea
h of these negative poles oneof the link that does not go to the positive pole we
onsidered �rst. Hen
e theforget(M) swit
hed module is not
onne
ted (there are no outgoing links). Hen
e
ontradi
tion. (3) Else there exists at least one in
oming negative pole � with thewhole set of links asso
iated to the positive pole: the redu
tion rules apply and weare �nished or this positive pole is linearly linked with b to a negative pole �. Su
h� is not ℄-marked otherwise it
orresponds to a proof-stru
ture with an exponentialbox with two prin
ipal ports, hen
e
ontradi
tion. The redu
tion rules apply to �(and then to �) or these exists a link
 from � to another positive pole as in thefollowing �gure: ℄[b ��℄
�(�)64

Fouquere and Mogbilthen one
an de�ne a swit
hing fun
tion using the
 link but not b: the
orrespondingswit
hed proof-stru
ture
ontains an un
onne
ted
omponent in the exponential boxindu
ed by the (℄-marked) � negative. Hen
e
ontradi
tion. This holds be
ause the� links are all linear or none are linear. (4) Finally, there exists at least one in
omingnegative pole � with the whole set of links asso
iated to the positive pole itself notlinearly linked: the redu
tion rules apply. 2Corollary 3.3 If F is a provable formula then there exists a
orre
t (
losed) moduleM su
h that t(M) = F .4 Con
lusionWe �rst adapt the
lassi
al rewriting
riterion of Danos to the n-ary bipolar
ase fortesting the
orre
tness of
losed modules. We show in parti
ular that polarizationgreatly simpli�es the rewriting pro
edure. We extend our results to the exponential
ase. In parti
ular, we give a lo
al
riterion for testing
orre
tness of modulesin presen
e of exponentials. Note that
urrent
riteria presupposes that 'boxes' arealready given, although our redu
tion relation helps to dis
over it. These results maybe useful in designing
on
urrent logi
 programming languages, in the style suggestedby Andreoli in re
ent papers, as it extends his works by removing
onstraints onprogramming obje
ts.Referen
es[1℄ Andreoli, J.-M., Logi
 programming with fo
using proofs in linear logi
., J. Log. Comput. 2 (1992),pp. 297�347.[2℄ Andreoli, J.-M., Fo
ussing and proof
onstru
tion, Annals of Pure and Applied Logi
 107 (2001),pp. 131�163.[3℄ Andreoli, J.-M., Fo
ussing proof-net
onstru
tion as a middleware paradigm, in: A. Voronkov, editor,CADE, Le
ture Notes in Computer S
ien
e 2392 (2002), pp. 501�516.[4℄ Andreoli, J.-M. and L. Mazaré, Con
urrent
onstru
tion of proof-nets, in: M. Baaz and J. A. Makowsky,editors, CSL, Le
ture Notes in Computer S
ien
e 2803 (2003), pp. 29�42.[5℄ Boudes, P., Proje
ting games on hyper
oheren
es., in: J. Díaz, J. Karhumäki, A. Lepistö and D. Sannella,editors, ICALP, Le
ture Notes in Computer S
ien
e 3142 (2004), pp. 257�268.[6℄ Danos, V., �Une appli
ation de la logique linéaire à l'étude des pro
essus de normalisation(prin
ipalement de �-
al
ul),� Ph.D. thesis, Université Denis Diderot, Paris 7 (1990).[7℄ Danos, V. and L. Regnier, The stru
ture of multipli
atives, Ar
hive for Mathemati
al Logi
 28 (1989),pp. 181�203.[8℄ Fouqueré, C. and V. Mogbil, Rewritings in polarized (partial) proof stru
tures, in: F. L. Paola Brus
oliand J. Stewart, editors, 1st Workshop on Stru
tures and Dedu
tions, Te
hni
al Report ISSN 1430-211X (2005), pp. 95�109.[9℄ Girard, J.-Y., Linear logi
, Theoreti
al Computer S
ien
e 50 (1987), pp. 1�102.[10℄ Girard, J.-Y., On the unity of logi
., Ann. Pure Appl. Logi
 59 (1993), pp. 201�217.[11℄ Guerrini, S., Corre
tness of multipli
ative proof nets is linear, in: Logi
 in Computer S
ien
e, 1999, pp.454�463.URL
iteseer.ist.psu.edu/guerrini99
orre
tness.html[12℄ Lafont, Y., From proof-nets to intera
tion nets, in: J.-Y. Girard, Y. Lafont and L. Regnier, editors,Advan
es in Linear Logi
, London Mathemati
al So
iety Le
ture Note 222, Cambridge UniversityPress, 1995 pp. 225�247, pro
eedings of the Workshop on Linear Logi
, Itha
a, NewYork, June 1993.[13℄ Laurent, O., Syntax vs. semanti
s: a polarized approa
h, Theoreti
al Computer S
ien
e 343 (2005),pp. 177�206. 65

citeseer.ist.psu.edu/guerrini99correctness.html

TERMGRAPH 2007

Deduction Graphs with Universal
Quantification

Herman Geuvers, Iris Loeb1

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

Abstract

Deduction Graphs are meant to generalise both Gentzen-Prawitz style natural deductions and Fitch style
flag deductions. They have the structure of acyclic directed graphs with boxes. In [2] we have investigated
the deduction graphs for minimal proposition logic. This paper studies the extension with first-order
universal quantification, showing the robustness of the concept of deduction graphs.

Keywords: Natural deduction, universal quantification, cut-elimination.

1 Introduction

In this paper we extend deduction graphs, DGs, of [2], with first-order universal
quantification. In [2] we have presented deduction graphs for minimal propositional
logic (only implication) as a formalism for “natural deduction with sharing”. The
natural deductions become acyclic directed graphs with boxes to delimit the scope
of local assumptions. The boxes are used in the →-introduction rule. Figure 1
presents an example of a deduction graph that represents a deduction of B (node
9) from the hypotheses A→A→B and (A→B)→A (nodes 3 and 7).

The arrow represents (inverse) derivability, so e.g. node 9 (B) is derived from
nodes 6 (A→B) and 8 (A). Similarly node 6 (A→B) is derived from 5 (B) while
discharging the “free” nodes (i.e. cancelling the assumptions) 1 and 2 (A). Deduc-
tion graphs are singled out from a larger set of graph-structures, the so called closed
box directed graphs, cbdg, which basically are labelled directed graphs with boxes,
where a box is a collection of nodes, B. Each box B corresponds to a node, the box
node of B. In a cbdg it is required that two boxes are disjoint or one is contained in
the other; there is only one outgoing edge from a box node and that edge points into
the box itself; apart from the edge from the box node, there are no edges pointing
into a box.

1 Email: H.Geuvers@cs.ru.nl, I.Loeb@cs.ru.nl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:H.Geuvers@cs.ru.nl
mailto:I.Loeb@cs.ru.nl

Geuvers, Loeb

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

PP
PP

PP
P

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A

��
��
�

T
T
T
T

���
���

���
��

J
J
J
J
J

(4,A→ B)

(2,A)(1,A)

(5,B)

(3,A→ A→ B)

(6,A→ B)

(7,(A→ B)→ A)

(8,A)

(9,B)

Fig. 1. Deduction graph in the implicational fragment

To make all this precise, we repeat some definitions of [2].

Definition 1.1 A closed box directed graph is a triple 〈X,G, (Bi)i∈I〉 where X is a
set of labels, G is a directed graph where all nodes have a label in X and (Bi)i∈I is a
collection of sets of nodes of G, the boxes. Each box Bi corresponds to a node, the
box node of Bi. Moreover, the boxes (Bi)i∈I should satisfy the following properties.

(i) (Non-overlap) Two boxes are disjoint or one is contained in the other: ∀i, j ∈
I(Bi ∩ Bj = ∅ ∨ Bi ⊂ Bj ∨ Bj ⊂ Bi),

(ii) (box node edge) There is only one outgoing edge from a box node and that
points into the box itself (i.e. to a node in the box),

(iii) (No edges into a box) Apart from the edge from the box node, there are no
edges pointing into a box.

Definition 1.2 Let G be a closed box directed graph. A box-topological ordering
of G is a linear ordering < of the nodes of G, such that for all nodes n0, n1 of G:

(i) If n0 −−> n1, then n1 < n0.

(ii) If n0 is the box node of a box containing n1, then n1 < n0.

Definition 1.3 Let 〈G, (Bi)i∈I〉, be a closed box directed graph and let n0 and n1

be nodes in this graph.

• Node n1 is in scope of n0 if n0 is in all boxes that n1 is in. In a formula:
∀i ∈ I(n1 ∈ Bi ⇒ n0 ∈ Bi). (So the nodes in scope of n0 are the nodes that are
in ‘wider’ boxes.)

• The nodes n0 and n1 are at the same depth, when n0 is in scope of n1, and n1 is
in scope of n0. Node n0 is at a greater depth than n1, when n1 is in scope of n0,
but n0 is not in scope of n1.

• Node n1 is a top-level node if n1 is not contained in any box.
• The free nodes are the top-level nodes that have no outgoing edges.

Originally, boxes were meant to border the scope of a local assumption, but now
we also use boxes to border the scope of a quantifier: When we do a ∀-introduction,
we create a box with box node ∀x.ϕ. To carry this extension through we have
to consider how to deal with the side condition on the ∀-introduction rule, which

67

Geuvers, Loeb

is stated in Gentzen-Prawitz style natural deduction as follows: “the eigenvariable
does not occur free in any of the non-discharged assumptions”. (The eigenvariable is
the quantified variable x in the introduction of ∀x.ϕ.) In DGUs we want to represent
this by a more “local” side condition. A first idea would be to require that there
is no edge pointing out of the box to a formula in which the eigenvariable occurs
free, like usually done in Fitch deductions. (So when we introduce ∀x.ϕ, the box we
create should not have edges pointing out to a node ψ with x ∈ FV(ψ).) However,
this would cause severe problems in the cut-elimination procedure, as the following
graph shows. The ∀-box has been depicted with a dashed line.

��B
B
B
B
B

bb �
�
�
�
�
�
�

�
�
�
�
�
�
�B

B
B
B
B
B
B

B
B

``` ((((

   
   

 

��
�

A
A
A
A

(1, A→P(x)→∀y.Q(y))

(3, A)

(4, P(x)→∀y.Q(y))

(5, ∀y.Q(y))

(2, P(x))

(6, A→∀y.Q(y))

(7, ∀x.S(x)) (8, ∀x.(S(x)→A))

(9, S(x)) (10, S(x)→A)

(11, A)

(12, ∀y.Q(y))

(14, ∀y.Q(y)→P(x))

(13, ∀x.(∀y.Q(y))→P(x))

(15, P(x))

(16, ∀x.P(x))

There is a hidden →-cut in node 12: The implication has been introduced in node
6 and is then immediately eliminated using node 11 to derive node 12. The cut is
hidden because nodes 6 and 12 are not at the same depth. So we first have to do
an incorporation step, moving the box with box node 6 into the box with box node
16. 2

The eigenvariable of the ∀-box is x. If we would do an incorporation directly,
there would be arrows from inside the ∀-box to the nodes 1 and 2 outside the box,
in which x occurs free. This is forbidden. We therefore first have to do a renaming
of the eigenvariable, like shown in Fig. 2.

��B
B
B
B
B

bb �
�
�
�
�
�
�

�
�
�
�
�
�
�B

B
B
B
B
B
B

B
B

``` ((((


��
�

A
A
A
A

(1, A→P(x)→∀y.Q(y))

(3, A)

(4, P(x)→∀y.Q(y))

(5, ∀y.Q(y))

(2, P(x))

(6, A→∀y.Q(y))

(7, ∀x.S(x)) (8, ∀x.(S(x)→A))

(9, S(x)) (10, S(x)→A)

(11, A)

(12, ∀y.Q(y))

(14, ∀y.Q(y)→P(z))

(13, ∀x.(∀y.Q(y))→P(x))

(15, P(z))

(16, ∀z.P(z))

Fig. 2. Renaming of eigenvariable.

This renaming is not so trivial because it not only involves nodes inside the box
but also the x in node 16. But when we rename x in node 16, we also have to
rename it in nodes that refer to 16, and propagate that through the graph. This
could thus involve any node of G, eventually even nodes 1 and 2. Renaming is hence
not just complicated, but it might a priori not even solve the problem.

As this looks like Gentzen-Prawitz style natural deduction, why doesn’t the

2 This is explained in detail in [2]. We now just remark that eliminating the cut directly includes adding
an edge from 3 to 11. This does not yield a DG because the edge would be pointing into box, so we have to
incorporate first.

68

Geuvers, Loeb

necessity to rename variables occur in that formalism? There is no sharing in the
example graph, so we can present the deduction faithfully as a tree in the following
way (where [A]1 denotes the discharging (or cancelling) of hypothesis A at the the
application of the logical rule referred to by 1):

P(x)

[A]1 A→P(x)→∀y.Q(y)

P(x)→∀y.Q(y)

∀y.Q(y)
1

A→∀y.Q(y)

∀x.S(x)

S(x)

∀x.(S(x)→A)

S(x)→A

A

∀y.Q(y)

∀x.(∀y.Q(y)→P(x))

∀y.Q(y)→P(x)

P(x)

∀x.P(x)

1

But this is not a correct Gentzen-Prawitz style natural deduction, as the variable
x occurs free in the non-discharged assumption A→P (x)→∀y.Q(y) when it gets
bound in the ∀-I rule introducing ∀x.P (x). Apparently the ∀-introduction rule in
Gentzen-Prawitz style natural deduction is strict enough to prevent the need for
renaming variables during ∀-cut-elimination.

Our solution is to use two sets of variables: free variables, Var and bound vari-
ables BVar and to rename the free variable with a fresh bound variable when doing
the ∀-introduction. Furthermore, we require that the eigenvariable is unique for
that box (i.e. it does not occur anywhere outside the box). A further discussion of
the choice of syntax can be found in Section 3.1.

In Section 2 we give the definition of deduction graphs with universal quantifi-
cation, called DGUs, starting from definitions for terms and formulas of first-order
predicate logic. The process of cut-elimination is discussed in Section 3, followed
by strong normalisation in Section 4. Finally, Section 5 compares DGUs with devel-
opments in proof nets.

2 Definition

Different from the language of first-order predicate logic for Gentzen-Prawitz style
natural deduction [1,6], we define the language Pred of first-order predicate logic
with universal quantification and equality for deduction graphs to have two kinds
of variables. The first kind, Var denoted by u, v, w, . . ., are meant to be used as free
variables. The second kind, BVar, denoted by x, y, z, . . ., will only be used bound.
The same idea is often used for the language of first-order predicate logic for Fitch
style flag deductions [7].

We now define the terms, basic formulas, formulas and axioms of Pred.

Definition 2.1 (i) The set of terms of Pred, Term is defined as follows.

Term ::= Var | F(Term, . . . ,Term)

where F is a function symbol with a fixed arity and the length of the sequence
of terms following it should be equal to the arity of F.

69

Geuvers, Loeb

(ii) The set of formulas of Pred, Form, is defined as follows.

Form ::= R(Term, . . . ,Term) | Term = Term | Form→Form | ∀x.Form[x/u]

where R is a relation symbol with a fixed arity and the length of the sequence
of terms following it should be equal to the arity of R; x ranges over BVar and
u over Var. So, in the ∀x.Form[x/u] case, when we introduce the ∀, we also
replace a free variable (u) by a bound one (x).

We adopt the following convention for the brackets in formula: we omit brackets
around →-formulas by letting → associate to the right; ∀ binds stronger than →;
outer brackets are not written, nor are any other brackets that do not contribute
to our understanding of the formula.

So, for example, ∀x.ϕ→ψ→ξ ≡ ((∀x.ϕ)→(ψ→ξ)). Note, however, that
∀x.P(x)→Q(x) can formally only be understood as (∀x.(P(x)→Q(x))), because
((∀x.P(x))→Q(x)) is not a formula. In these cases we will write the inner brackets
under the quantifier explicitly anyway, for the convention would otherwise lead us
to misinterpret the formula.

Because Pred deviates from the language of first-order predicate logic for
Gentzen-Prawitz natural deduction, this also means that the ∀-introduction for
deduction graphs cannot be similar to the ∀-introduction in the Gentzen-Prawitz
formalism.

The ∀-introduction in Gentzen-Prawitz style natural deduction is as follows:

D

ϕ

∀x.ϕ

Where x may not be free in the non-discharged assumptions of D. This means that
x might be free in ϕ, although it is bound in ∀x.ϕ.

In deduction graphs we will introduce a fresh (bound) variable in the ∀-
introduction step. The advantage is then, that a deduction graph is still well-
formed, when we rename only free variables. We will use this later, in the process
of cut-elimination.

Definition 2.2 The collection of deduction graphs for first-order universal quan-
tification, DGU is the set of closed box directed graphs over IN × Pred inductively
defined as follows:

Axiom A single node (n,A) is a deduction graph,

→-E If G is a deduction graph containing two nodes (n,A→B) and (m,A) at the top
level, then the graph G′ := G with
· a new node (p,B) at the top level
· an edge (p,B)−−> (n,A→B),
· an edge (p,B)−−> (m,A),
is a deduction graph.

→-I If G is a deduction graph containing a node (j, B) with no ingoing edges and a
finite set of free nodes with label A, (n1, A), . . . , (nk, A), all at the top level, then

70

Geuvers, Loeb

the graph G′ := G with
· A box B with box node (n,A→B), containing the nodes (j, B) and (n1, A),
. . . , (nk, A) and no other nodes that were free in G,

· An edge from the box node (n,A→B) to (j, B)
is a deduction graph under the proviso that it is a closed box directed graph.

Repeat If G is a deduction graph containing a node (n,A) at the top level, the graph
G′ := G with
· a new node (m,A) at the top level,
· an edge (m,A)−−> (n,A)
is a deduction graph.

∀-I If G is a DGU containing a node (j, ϕ) with no ingoing edges at top-level for some
formula ϕ of Pred, then the graph G′ := G with
· A box B with box node (n,∀x.ϕ[x/u]) , not containing any nodes without

outgoing edges, where we call u the eigenvariable of B if u occurs in ϕ,
· An edge from the box node (n,∀x.ϕ[x/u]) to (j, ϕ)
is a DGU under the proviso that: G′ is a well-formed closed box directed graph
and u does not occur in the label of any node that is not in B.

∀-E If G is a DGU with a node (n,∀x.ϕ) at top-level for some formula ϕ of Pred, then
the graph G′ := G with
· a node (p, ϕ[t/x]) where none of the variables of t is the eigenvariable of any

box of G,
· an edge from (p, ϕ[t/x]) to (n,∀x.ϕ)
is a DGU.

JoinU If G and G′ are two DGUs then G′′ = G ∪ G′ is a DGU under proviso that the
eigenvariables of G and the eigenvariables of G′ are disjoint.

So the rules for DGU are the ones for DG with the ∀-I and ∀-E rules added and
the Join rule slightly modified.

Example 2.3 Let P and Q be unary predicate symbols of Pred. Figure 3 shows an
example of an DGU. The graph is constructed by adding the nodes in their numerical
order: first nodes 1 and 2 by Axiom, then 3 and 4 by ∀-E, then 5 by →-E, then 6
by ∀-I and then 7 by →-I.

Lemma 2.4 Let G be a DGU. Then for every variable u:

A
A

A
A

A

bbb

HHHHHH

!!!!!!!

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�L
L

L
L

L
L

L
L

L
L

L
L

L
L

L

(1,∀y.(P(y)→Q(y))

(2,∀x.P(x))

(3, P(x)→Q(x)) (4, P(x))

(5, Q(x))

(6,∀x.Q(x))

(7,∀x.P(x)→∀x.Q(x))

Fig. 3. An example of a DGU.

71

Geuvers, Loeb

(i) u occurs as eigenvariable of a box of G at most once;

(ii) If u is an eigenvariable of a box B of G, it does not occur in a label of a node
outside B.

We formulate a criterion to check relatively easily whether a given closed box
directed graph is a DGU (Lemma 2.5). As an important notion for DGUs is the
eigenvariable of a box, we need a similar notion for general closed box directed
graphs. So, we call a variable u a box-variable of B, if u does not occur in the label
of the box node of B, but it does occur in the label of the node that the box node
points to. Remark that for DGUs the notion of eigenvariable and the notion of box-
variable coincides. We also recall from [2] the notion of a box-topological ordering :
> is a box-topological ordering of G if it is a linear ordering of the nodes of G, such
that n−−> m⇒ n > m and if B has box node n and m ∈ B, then n > m.

Lemma 2.5 A finite closed box directed graph G is a DGU if and only if the following
hold

(i) If u is a box-variable of a box B of G, it does not occur in a label of a node
outside B.

(ii) There is a box-topological ordering > of G.

(iii) Every node n of G is of one of the following six types:
A It has no outgoing edges.

→-E It has label B and has exactly two outgoing edges: one to a node (m,A→B)
and one to a node (p,A), both within the scope of n.

→-I It is a box node of a box B with label A→B and has exactly one outgoing edge,
which is to a node (j, B) inside the box B (and not in any deeper boxes) with
no other ingoing edges. All nodes inside the box without outgoing edges have
label A.

R It has label A and has exactly one outgoing edge, which is to a node (m,A)
that is within the scope of n.

∀-E It has label ϕ[t/x] for some formula ϕ, some term t and some variable x, and
n has exactly one outgoing edge to a node (m,∀x.ϕ) within the scope of n.

∀-I It is a box node of a box B with label ∀x.ϕ for some variable x and some
formula ϕ, and has exactly one outgoing edge, which is to a node (j, ϕ[u/x])
inside the box B (and not in any deeper boxes). Node (j, ϕ[u/x]) has no other
ingoing edges and there are no nodes without outgoing edges in B.

Proof. ⇒:By induction on the definition of deduction graph. ⇐:By induction on
the number of nodes of G, distinguishing according to the type of (one of) the
maximal node (in the box-topological ordering) of G. 2

3 Cut-elimination

We now also encounter a “detour” in a proof, when a ∀-introduction is immediately
followed by a ∀-elimination. Definition 3.3 describes the elimination of a safe ∀-cut.

Not all ∀-cuts are safe, so it might be necessary to apply some transformations
to make them safe. These transformations are the same ones as for →-cuts: repeat-
elimination, unsharing, and incorporation. The only difference with the transfor-

72

Geuvers, Loeb

mations on DGs is, that unsharing has become a little more involved, because of the
eigenvariable requirement.

Definition 3.1 A ∀-cut in a DGU G is a subgraph of G consisting of:

• a box node (n,∀x.ϕ),
• a node (p, ϕ[t/x]),
• a sequence of R-nodes (s0,∀x.ϕ), . . . , (si,∀x.ϕ),
• wdges (p, ϕ[t/x])−−> (si,∀x.ϕ)−−> . . .−−> (s0,∀x.ϕ)−−> (n,∀x.ϕ).

We call the node (n,∀x.ϕ) the major premiss and we call the node (p, ϕ[t/x]) the
conclusion.

Similarly, in a →-cut, we call (n,A→B) the major premiss and the node (p,B)
the conclusion.

Definition 3.2 Let B be the box associated to box node n. A (∀/→)-cut in a DGU
G is safe if the following requirements hold:

• there is an edge from the conclusion to the major premiss and that is the only
edge to the major premiss;

• the major premiss and the conclusion are at the same depth (relative to the box
structure);

Definition 3.3 The process of eliminating a safe ∀-cut is the following operation
on DGUs (see Figure 4):

• change the labels ψ of the nodes in the box of n, to ψ[t/u];
• remove the box and box node (n,∀x.ϕ[x/u]);
• add an edge from (p, ϕ[t/x]) to (j, ϕ[t/u]) (the node that n pointed to).

#
"

!

#
"

!B

(n, ∀x.ϕ[x/u])

(p, ϕ[x/u][t/x]) (p, ϕ[x/u][t/x])

(j, ϕ) (j, ϕ[t/u])

B[t/u]

Fig. 4. Schematic presentation of a safe ∀-cut elimination.

Lemma 3.4 If G is a DGU with safe ∀-cut c and G′ is obtained from G by eliminating
c, then G′ is also a DGU.

Proof. By Lemma 2.5. 2

We can generalise repeat-elimination, unsharing, and incorporation without
much ado. Because after unsharing we still want every eigenvariable to occur just
once, this step now includes the renaming of eigenvariables of copied boxes.

73

Geuvers, Loeb

Definition 3.5 Let G be a DGU with a cut with major premiss (n, ϕ) and conclusion
(p, ψ). Suppose G contains a node (n0, ϕ), an R-node (n1, ϕ) and edges n1 −−> n0

and p−−> n1. The repeat-elimination at n0, n1, p is obtained by:

• When an edge points to n1, redirect it to n0;
• Remove n1.

Lemma 3.6 For G a DGU with a cut with major premiss (n, ϕ) and conclusion
(p, ψ). Suppose G contains a node (n0, ϕ), an R-node (n1, ϕ) and edges n1 −−> n0

and p−−> n1, the repeat-elimination of at n0, n1, p is also a DGU.

Proof. By Lemma 2.5. 2

Definition 3.7 Let G be a DGU with a ∀-box B with eigenvariable u. Let v be a
fresh variable. Then the renaming of u by v is the graph G in which the labels ψ
of the nodes of B have been replaced by ψ[v/u].

Lemma 3.8 Let G be a DGU with a ∀-box B with eigenvariable u. Let v be a fresh
variable. Then the renaming of u by v is a DGU.

Proof. By Lemma 2.5. 2

Definition 3.9 Let G be a DGU with a cut c with major premiss n. Suppose n is
a box node of a box B and has k ≥ 2 ingoing edges, from p1, . . . , pk. Then the
unsharing of G at nodes n, p1, . . . pn is obtained by:

• making a box B′ that contains a copy of all nodes and edges of B,
• copy all outgoing edges of B to B′ (thus if we had q −−> m with q ∈ B, q′ ∈ B′

and m /∈ B, then we add q′ −−> m, where q′ is the copy of q ∈ B′,
• letting p2, . . . , pk point to n′ (the box node of B′) instead of n;
• renaming the eigenvariable of B′ and of all boxes contained in B′.

Lemma 3.10 Let G be a DGU with a cut c with major premiss n. Suppose n is a box
node of a box B and has k ≥ 2 ingoing edges, from p1, . . . , pk. Then the unsharing
of G at nodes n, p1, . . . pn is a DGU.

Proof. By Lemma 2.5. 2

Definition 3.11
We have a depth-conflict in the DGU G, if G contains a cut with major premiss n
and conclusion p at a greater depth, such that there is an arrow from p to n and
that is the only arrow to n. In that case the incorporation of G at n, p is obtained
by moving Bn, i.e. the box of n, into the box at the lowest depth that includes p
but excludes n.

Lemma 3.12 Suppose G is a DGU with a depth conflict. Then the incorporation at
the major premiss and the conclusion is a DGU.

Proof. By case analysis on the incorporating box. Then by Lemma 2.5. 2

Definition 3.13 Given a DGU G with a cut c, the process of →/∀-cut elimination
is the following;

74

Geuvers, Loeb

(i) (Repeat elimination) As long as there is no edge from the conclusion to the
major premiss, perform the appropriate repeat-elimination as described in Def-
inition 3.5;

(ii) (Unsharing) If there is an edge from the conclusion to the major premiss,
but this is not the only edge to the major premiss, perform an appropriate
unsharing step, as defined in Definition 3.9;

(iii) (Incorporation) As long as the conclusion is at a greater depth than the major
premiss, perform the appropriate incorporation step, as described in Definition
3.11.

(iv) (Eliminating a safe cut) If c is safe, perform either the safe →-cut-elimination
step, or the safe ∀-cut-elimination step, as defined in Definition 3.3.

3.1 Discussion

We have made some choices in the definition of DGUs that facilitate the process of
cut-elimination. Except for the choice of the language, which has already been
discussed in the Introduction, these are:

(i) We deviate from the side-condition for the ∀-introduction rule as normally used
in Fitch-style flag deduction, as discussed in the Introduction.

(ii) We require the uniqueness of the eigenvariables.

Suppose we would adopt the Fitch-style side-condition for the ∀-introduction
rule, then this results in having to do an additional renaming in the incorporation
step in some cases.

If we would abandon the requirement of unique eigenvariables and adopt the
Fitch-style side-condition, this would move renaming from the unsharing step to
the incorporation step.

4 Strong Normalisation

To obtain strong normalisation for cut-elimination on DGUs, we extend the λ-calculus
with tupling as defined in [2], and prove strong normalisation for it. Then a reduc-
tion preserving translation from DGUs to this calculus is defined.

The strong normalisation result we thus get is relatively weak: It is assumed
that first one cut is made safe and is eliminated, before handling another cut.

For Gentzen-Prawitz natural deduction, strong normalisation for cut-elimination
can be proven by (1) defining a →-cut preserving translation to the →-fragment and
(2) showing that an infinite ∀-cut reduction is impossible. That might also work for
the DGU case, but (2) is now problematic, because a ∀-cut contraction may involve
unsharing and then other ∀-cuts may be copied. We therefore opt for a direct proof
of strong normalisation for cut-elimination for DGUs.

Definition 4.1 The typed expressions T〈〉 and types of the λ→〈〉-calculus for first
order predicate logic with universal quantification are defined as follows.

(i) For ϕ ∈ Form, all variables xϕ are of type ϕ.

(ii) If T is of type ϕ→ψ and S is of type ϕ, (TS) is of type ψ.

75

Geuvers, Loeb

(iii) If T is of type ϕ, then λxψ.T is of type ψ→ϕ.

(iv) If T is of type ∀x.ϕ and t is a term, then (Tt) is of type ϕ[t/x].

(v) If T is of type ϕ, then λy.T [u := y] is of type ∀y.ϕ[y/u].

(vi) If T1, . . . , Tn are of types ϕ1, . . . ϕn respectively,
〈T1, . . . , Tn〉 is an expression of type ϕ1.

Definition 4.2 The reduction rules for the expressions are as follows:

(λxσ.M)N −−>β̄ 〈M,N〉 if x /∈ FV(M)

(λxσ.M)N −−>β̄M [x := N] if x ∈ FV(M)

(λy.M)t−−>β̄M [y := t]

〈M,P1, . . . , Pk〉N −−>β̄ 〈MN,P1, . . . , Pk〉
〈M,P1, . . . , Pk〉t−−>β̄ 〈Mt,P1, . . . , Pk〉
N〈M,P1, . . . , Pk〉 −−>β̄ 〈NM,P1, . . . Pk〉

〈. . . , 〈M,P1, . . . , Pk〉, . . .〉 −−>β̄ 〈. . . ,M, P1, . . . , Pk, . . .〉

As can be observed from the typing and the reduction rules, the N1, . . . , Nk in
〈M,N1, . . . , Nk〉 act as a kind of ‘garbage’. The order of the terms in N1, . . . , Nk

is irrelevant and we therefore consider terms modulo permutation of these vectors,
which we will write as ≡p.

Definition 4.3 Given a deduction graph G and a node n in G, we define the λ-term
〈[G,n]〉 as follows (by induction on the number of nodes of G).

A If (n,A) has no outgoing edges, 〈[G,n]〉 := xAn ,

→E If (n,B)−−> (m,A→B), and (n,B)−−> (p,A), define 〈[G,n]〉 := 〈[G,m]〉 〈[G, p]〉.
R If (n,A)−−> (m,A), define 〈[G,n]〉 := 〈[G,m]〉
→I If (n,A→B) is a box node with (n,A→B) −−> (j, B), the free nodes of the

box are n1, . . . , nk and the nodes without incoming edges inside the box are
m1, . . . ,mp, then

〈[G,n]〉 := λxA.〈〈[G, j]〉, 〈[G,m1]〉, . . . , 〈[G,mp]〉〉[xn1 := x, . . . , xnk
:= x].

∀E If (n, ϕ[t/y])−−> (p,∀y.ϕ), define 〈[G,n]〉 := 〈[G, p]〉t.
∀I If (n,∀y.ϕ[y/u]) −−> (j, ϕ) and the nodes without incoming edges are

m1, . . . ,mp, then

〈[G,n]〉 := λy.〈〈[G, j]〉, 〈[G,m1]〉, . . . , 〈[G,mp]〉〉[u := y]

The interpretation of the deduction graph G, 〈[G]〉, is defined as 〈〈[G, r1]〉, . . .,
〈[G, rl]〉〉, where r1, . . . , rl are the top-level nodes without incoming edges in the
deduction graph G.

Definition 4.4 A λ→〈〉 context is given by the following abstract syntax K[−].

K[−] := [−] | T〈〉K[−] | K[−]T〈〉

76

Geuvers, Loeb

So a λ→〈〉 context is a λ→〈〉-term consisting only of applications (no abstrac-
tions) with one open place. The following is immediate by induction on K[−].

Lemma 4.5 For all λ→〈〉 contexts K[−] and λ→〈〉-terms M,N1, . . . , Nk

K[〈M,N1, . . . , Nk〉]−−>−−>β̄〈K[M], N1, . . . , Nk〉.

Lemma 4.6 (∀ Cut-elimination is β̄-reduction in λ→〈〉)
If G′ is obtained from G by a ∀-cut-elimination, then 〈[G]〉 −−>−−>+

β̄
〈[G′]〉.

Proof. By induction on the structure of G. 2

Theorem 4.7 The process of cut-elimination is terminating for DGUs.

Proof. Suppose it is not terminating. Then by Lemma 4.6, we have an infinite
reduction in λ→〈〉, but λ→〈〉 is strongly normalising (see [2]). 2

5 Connection with Proof Nets

In [3] we have seen a correspondence between a variant of DGs and proof nets of
MELL. We remarked that there are some superficial similarities between the two:
both have boxes and both enable sharing (contraction). Using this, we were able
to define a translation from these deduction graphs to proof nets that preserves
reduction.

In the way they handle quantification proof nets also seem fairly close to de-
duction graphs. In the early days [4] boxes were used to delimit the scope of a
quantification. Later (see for example [8]), this was put aside and replaced by
global correctness criteria. It seems plausible that in deduction graphs too we could
omit boxes for this use. We have not done this as deduction graphs serve another
purpose than proof nets, and leaving out the ∀-boxes would make the deduction
graphs less perspicuous. This discrepancy in the handling of quantification does
not seem to jeopardise the aim to extend the translation given in [3]: Because
(∀x.ϕ)∗ =!(∀x.ϕ∗) (where ()∗ is Girard’s translation), it is the exponential box that
should act like the ∀-boxes in deduction graphs anyway.

The main difficulty in both proof nets and deduction graphs is that during cut-
elimination it is in some cases necessary to do a renaming. In anticipation to this,
we have changed the ∀-introduction rule for deduction graphs and we have used two
kinds of variables: one kind for bound uses, and one for free uses (see also [7]).

In [5], Girard discusses proof nets of MLL with quantifiers. Note that, as these
proof nets do not include the exponential rules, this results in a simpler system.
His approach is similar to ours. He replaces some free variables by constants, which
reminds of our solution with two kinds of variables. He also insists on uniqueness
of the eigenvariable. About renaming he says:

In practice, it would be crazy to rename bound variables (. . .).

Luckily, as there is no copying going on in the cut-elimination of MLL, renaming is
nowhere necessary.

This changes when we shift our attention to MELL proof nets with quantifica-
tion. The most complete study of this can be found in [8], and although it handles

77

Geuvers, Loeb

only second order quantification explicitly, it is generally assumed [4] [8], that first
order quantifiers do not provide additional difficulties.

Here another approach has been taken. Instead of discriminating between dif-
ferent kinds of variables, an equivalence relation on the formulas is defined, making
two formulas the same when one can be obtained from the other by renaming bound
variables. Deviating from [8], this line might be pursued as follows: 3

(i) Define formulas;

(ii) Define proof-structures;

(iii) Define the equivalence relation on formulas;

(iv) Extend the equivalence relation on proof-structures.

Once this has been done, it needs to be shown that after cut-elimination on a
proof-net, one gets a proof-structure that is equivalent to a proof net.

This plan has two difficulties, the first being the exact definition of equivalence
relation on proof structures. Just saying that two proof structures are equivalent,
when they have the same structure and when formulas at the same places are
equivalent, would not suffice. In addition, it should also consider renaming of free
variables in formulas that will get bound somewhere else in the structure.

Secondly, it could be rather complicated to find an equivalent proof-net after cut-
elimination. This problem is very similar to the ones discussed in the Introduction.
It is not at all clear how this renaming can be done for example after c-b-reduction
(copying a box).

Another way out would be to extend the idea used in [5], similarly to deduction
graphs: Change the ∀-rule and work with two kinds of variables. This might very
well work.

Whence proof nets with quantifiers are defined properly and completely, it seems
likely that we can define a reduction-preserving translation from DGUs to them.

6 Acknowledgements

We thank the referees for their useful comments.

References

[1] Gerhard Gentzen. Untersuchungen über das logische Schliessen. In M.E. Szabo, editor, Collected Papers
of Gerhard Gentzen. North-Holland Publishing Company, 1969.

[2] Herman Geuvers and Iris Loeb. Natural deduction via graphs: Formal definition and computation rules.
To appear in MSCS.

[3] Herman Geuvers and Iris Loeb. From deduction graphs to proof nets: Boxes and sharing in the graphical
presentation of deductions. In Rastislav Královič and Pawel Urzyczyn, editors, MFCS, volume 4162 of
Lecture Notes in Computer Science, pages 39–57. Springer, 2006.

[4] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[5] Jean-Yves Girard. Quantifiers in linear logic II. In Giovanna Corsi and Giovanni Sambin, editors,
Atti della Congresso: Nuovi Problemi della Logica e della Filosofia della Scienza, Vol. 2, pages 79–89.
Bologna: CLUEB, 1991.

3 Personal communication Lorenzo Tortora de Falco

78

Geuvers, Loeb

[6] Dag Prawitz. Natural Deduction: a proof-theoretical study. Stockholm: Almqvist och Wiksell, 1965.

[7] Richmond H. Thomason. Symbolic Logic: an Introduction. New York: Macmillan, 1970.

[8] Lorenzo Tortora de Falco. Réseaux, cohérence et expériences obsessionelles. PhD thesis, Université
Paris VII- Denis-Diderot, 2000.

79

TERMGRAPH 2007

An Algebra for Directed Bigraphs ?

Davide Grohmanna,1 Marino Miculana,2

a Department of Mathematics and Computer Science, University of Udine, Italy

Abstract

In this paper, we study the algebraic structure of directed bigraphs, a bigraphical model of computations
with locations, connections and resources previously introduced by the authors as a unifying generalization
of other variants of bigraphs. We give a sound and complete axiomatization of the (pre)category of directed
bigraphs. Moreover, we use this axiomatization for encoding the λ-calculus, both in call-by-name and
call-by-value variants, showing in this way the expressive power of directed bigraphs.

Keywords: Bigraphical models, categorical meta-models for Concurrency, λ-calculus.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical meta-model of com-
putation introduced by Milner [7,8] in which both locality and connectivity are
central notions. The key structure of BRSs are bigraphs, which are composed by
two orthogonal graph structures: a hierarchical place graph describing locations,
and a link (hyper-)graph describing connections. The reaction rules, representing
the dynamics of the BRS, may change both these structures. Several process cal-
culi for Concurrency can be represented in bigraphs, such as CCS, Ambients, and
(using a mild generalization called binding bigraphs), also the π-calculus and the
λ-calculus. An important feature of bigraphs is that they support a very general
construction, based on the notion of relative pushout (RPO) [5], which allows to
turn reaction rules into labelled transition systems.

However, Milner’s definition of bigraphs is not the only possible one. Sassone
and Sobociński have given in [11] an alternative definition, derived from a general
categorical construction, the “input-linear cospan” over a particular 2-category of
place-link graphs. Also this variant enjoys a general construction of RPOs. Inter-
estingly, Milner’s and Sassone-Sobociński’s variants do not coincide; in fact, these
two categories and their respective RPO constructions do not generalize each other.

? Work supported by Italian MIUR project 2005015824 Art.
1 Email: grohmann@dimi.uniud.it
2 Email: miculan@dimi.uniud.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:grohmann@dimi.uniud.it
mailto:miculan@dimi.uniud.it

Grohmann, Miculan

In previous work [4,3], we have presented directed bigraphs, a generalization of
both these kinds of bigraphs. Intuitively, the idea of directed bigraphs is to notice
that names are not resources on their own, but only a way for denoting (abstract)
resources (i.e., edges). A system can “ask” for external resources thorugh the names
on its interfaces. Thus, we can identify a “resource request flow” starting from
control ports, going through names and terminating in edges. This information
is represented in the new notion of directed link graph, which replaces the previous
notion of link graphs. We have given RPO constructions for this model, generalizing
and unifying the constructions independently given by Jensen-Milner and Sassone-
Sobociński in their respective variants. Moreover, the very same construction can
be used for calculating relative pullbacks as well.

In this paper, we continue this line of investigation. We study the algebraic
structure of directed bigraphs, giving a sound and complete axiomatization of this
(pre)category. Moreover, we use this axiomatization for encoding the λ-calculus,
both in call-by-name and call-by-value variants. Notably, we do not need to in-
troduce further extensions (such as binding signatures) to this end; thus, directed
bigraphs turn out to be more expressive than the two variants previously proposed.

Synopsis In Section 2 we briefly recall the main definitions about the precategory
′DBig of directed bigraphs, and the category DBig of abstract directed bigraphs. In
Section 3 we analyze the algebraic structure of the precategory ′DBig; this analysis
is then carried on to the category DBig in Section 4. In Section 5 we put directed
bigraphs at work, giving the encodings of λ-calculus. Conclusions are in Section 6.

2 Directed bigraphs

In this section we recall the definition and some properties of directed bigraphs; for
details, we refer to [4,3]. Following Milner’s approach, we work in precategories; see
[6, §3] for an introduction to the theory of supported monoidal precategories. 3

Let K be a given signature of controls, and ar : K → ω the arity function.

Definition 2.1 A polarized interface X is a pair of disjoint sets of names X =
(X−, X+); the two components are called downward and upward faces, respectively.

A directed link graph A : X → Y is A = (V,E, ctrl, link) where X and Y

are the inner and outer interfaces, V is the set of nodes, E is the set of edges,
ctrl : V → K is the control map, and link : Pnt(A) → Lnk(A) is the link map,
where the ports, the points and the links of A are defined as follows:

Prt(A),
∑
v∈V

ar(ctrl(v)) Pnt(A) , X+] Y −] Prt(A) Lnk(A) , X−] Y +] E

The link map cannot connect downward and upward names of the same interface,
i.e., the following condition must hold: (link(X+) ∩X−) ∪ (link(Y −) ∩ Y +) = ∅.

Directed link graphs are graphically depicted much like ordinary link graphs,
with the difference that edges are explicit objects and points and names are asso-
ciated to edges (or other names) by (simple) directed arcs. This notation makes

3 We prefer precategories to 2-categories, because their concreteness allows for more direct definitions.

81

Grohmann, Miculan

explicit the “resource request flow”: ports and names in the interfaces can be asso-
ciated either to locally defined resources (i.e., a local edge) or to resources available
from outside the system (i.e., via an outward name).

Definition 2.2 (′DLG) The precategory of directed link graphs has polarized in-
terfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1),
the composition A1 ◦A0 : X0 → X2 is defined when the two link graphs have disjoint
nodes and edges. In this case, A1 ◦ A0 , (V,E, ctrl, link), where V , V0] V1,
ctrl , ctrl0]ctrl1, E , E0]E1 and link : X+

0]X−
2]P → E]X−

0]X+
2 is defined

as follows (where P = Prt(A0)] Prt(A1)):

link(p) ,


link0(p) if p ∈ X+

0] Prt(A0) and link0(p) ∈ E0]X−
0

link1(x) if p ∈ X+
0] Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2] Prt(A1) and link1(p) ∈ E1]X+

2

link0(x) if p ∈ X−
2] Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX , (∅, ∅, ∅K, IdX−]X+) : X → X.

Definition 2.3 The support of A = (V,E, ctrl, link) is the set |A| , V ⊕ E.

Definition 2.4 (idle, lean, open, closed, peer) Let A : X → Y be a link graph.
A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e., l 6∈

link(Pnt(A))). The link graph A is lean if there are no idle links.
A link l is open if it is an inner downward name or an outer upward name (i.e.,

l ∈ X− ∪ Y +); it is closed if it is an edge.
A point p is open if link(p) is an open link; otherwise it is closed. Two points

p1, p2 are peer if they are mapped to the same link, that is link(p1) = link(p2).

Proposition 2.5 A link graph A : X → Y is epi iff there are no peer names in Y −

and no idle names in Y +. Dually, A is mono iff there are no idle names in X−

and no peer names in X+.
A is an isomorphism iff it has no nodes, no edges, and its link map can be

decomposed in two bijections link+ : X+ → Y +, link− : Y − → X−.

Definition 2.6 The tensor product ⊗ in ′DLG is defined as follows. Given two
objects X, Y , if these are pairwise disjoint then X ⊗ Y , (X−] Y −, X+] Y +).
Given two link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Yi (i = 0, 1), if the tensor
products of the interfaces are defined and the sets of nodes and edges are pairwise
disjoint then the tensor product A0⊗A1 : X0⊗X1 → Y0⊗Y1 is defined as A0⊗A1 ,
(V0] V1, E0] E1, ctrl0] ctrl1, link0] link1).

Finally, we can define the directed bigraphs as the composition of standard place
graphs (see [6, §7] for definitions) and directed link graphs.

Definition 2.7 A (bigraphical) interface I is composed by a width (a finite ordinal,
denoted by width(I)) and by a polarized interface of link graphs (i.e., a pair of finite
sets of names). A directed bigraph with signature K is G = (V,E, ctrl, prnt, link) :
I → J , where I = 〈m,X〉 and J = 〈n, Y 〉 are its inner and outer interfaces respec-
tively; V and E are the sets of nodes and edges respectively, and prnt, ctrl and link

82

Grohmann, Miculan

are the parent, control and link maps, such that GP , (V, ctrl, prnt) : m → n is a
place graph and GL , (V,E, ctrl, link) : X → Y is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP , GL〉. In this notation,
a place graph and a (directed) link graph can be put together iff they have the same
sets of nodes and edges.

Definition 2.8 (′DBig) The precategory ′DBig of directed bigraph with signature
K has interfaces I = 〈m,X〉 as objects and directed bigraphs G = 〈GP , GL〉 : I → J

as morphisms. If H : J → K is another directed bigraph with sets of nodes and edges
disjoint from V and E respectively, then their composition is defined by composing
their components, i.e.: H ◦G , 〈HP ◦GP ,HL ◦GL〉 : I → K..

The identity directed bigraph of I = 〈m,X〉 is 〈idm, IdX−]X+〉 : I → I.

Proposition 2.9 A directed bigraph G in ′DBig is epi (respectively mono) iff its
two components GP and GL are epi (respectively mono).

The isomorphisms in ′DBig are all the combinations ι = 〈ιP , ιL〉 of an isomor-
phism in ′PLG and an isomorphism in ′DLG.

Definition 2.10 The tensor product ⊗ in ′DBig is defined as follows. Given
I = 〈m,X〉 and J = 〈n, Y 〉, where X and Y are pairwise disjoint, then 〈m,X〉 ⊗
〈n, Y 〉 , 〈m + n, (X−] Y −, X+] Y +)〉.

The tensor product of Gi : Ii → Ji is defined as G0⊗G1 , 〈GP
0 ⊗GP

1 , GL
0 ⊗GL

1 〉 :
I0 ⊗ I1 → J0 ⊗ J1, when the tensor products of the interfaces are defined and the
sets of nodes and edges are pairwise disjoint.

Remarkably, directed link graphs (and bigraphs) have relative pushouts (RPOs)
and pullbacks (RPBs), which can be obtained by a general construction, subsuming
both Milner’s and Sassone-Sobociński’s variants. We refer the reader to [4,3].

Actually, in many situations we do not want to distinguish bigraphs differing
only on the identity of nodes and edges. To this end, we introduce the category
DBig of abstract directed bigraphs. The category DBig is constructed from ′DBig

forgetting the identity of nodes and edges and any idle edge. More precisely, abstract
bigraphs are concrete bigraphs taken up-to an equivalence m (see [6] for details).

Definition 2.11 (abstract directed bigraphs) Two concrete directed bigraphs
G and H are lean-support equivalent, written G m H, if they are support equivalent
after removing any idle edges.

The category DBig of abstract directed bigraphs has the same objects as ′DBig,
and its arrows are lean-support equivalence classes of directed bigraphs. We denote
by A : ′DBig → DBig the associated quotient functor.

We remark that DBig is a category (and not only a precategory); moreover, A
enjoys several important properties which we omit here due to lack of space; see [6].

3 Algebraic structure of ′DBig

We begin this section introducing some useful notations.

Remark 3.1 An interface 〈0, (X−, X+)〉 is abbreviated as (X−, X+); a singleton
set {x} as x; and 〈m, (∅, ∅)〉 as m. The interfaces (∅, ∅) and 0 denote the same

83

Grohmann, Miculan

interface, the origin ε. Hence the identity idε can be expressed as ε, (∅, ∅) or 0.
A bigraph A : (∅, X+) → (∅, Y +) is defined by a (not necessarily surjective)

function σ : X+ → Y +, called substitution, if it has no nodes and no edges and
the link map is σ; analogously a bigraph A : (X−, ∅) → (Y −, ∅) is defined by a (not
necessarily surjective) function δ : Y − → X−, called fusion, if it has no nodes and
no edges and the link map is δ. With abuse of notation, we write σ and δ to mean
their corresponding bigraphs.

Let ~x, ~y be two vectors of the same length; we write (y0/x0, y1/x1, . . .) or M~y
~x,

where all the xi are distinct, for the surjective map xi 7→ yi; similarly, we write
(y0/x0, y1/x1, . . .) or O~y

~x, where all yi are distinct, for the surjective map yi 7→ xi.
We denote by MX : (∅, ∅) → (∅, X) the bigraph defined by the empty substitution

σ : ∅ → X, in the same way we denote OX : (X, ∅) → (∅, ∅) for the bigraph defined
by the empty fusion δ : ∅ → X.

Note that each substitution σ can be expressed in a unique way as σ = τ ⊗ MX ,
where τ is a surjective substitution; while each fusion δ can be expressed in a unique
way as δ = ζ ⊗OX , where ζ is a surjective fusion. We denote the renamings by α,
i.e. the bijective substitution or bijective fusion.

Finally, we introduce the closure bigraphs. The closure H
N

x
y : (∅, y) → (x, ∅) has

no nodes, a unique edge e and the link map is link(x) = e = link(y). Two other
types of closures are obtained by composing the closure H

N
x
y and Mx or Oy respectively:

• the up-closure Ny : (∅, y) → (∅, ∅) has no nodes, one edge e and link(y) = e;
• the down-closure Hx : (∅, ∅) → (x, ∅) has no nodes, one edge e and link(x) = e.

Definition 3.2 (wirings) A wiring is a bigraph whose interfaces have zero width
(and hence has no nodes). The wirings ω are generated by the composition or tensor
product of three base elements: the substitutions σ : (∅, X+) → (∅, Y +); the fusions
δ : (Y −, ∅) → (X−, ∅); and the closures H

N
x
y : (∅, y) → (x, ∅).

Definition 3.3 (prime bigraph) An interface is prime if it has width equal to 1.
Often we abbreviate a prime interface 〈1, (X−, X+)〉 with 〈(X−, X+)〉, in particular
〈(∅, ∅)〉 = 1. A prime bigraph P : 〈m, (Y −, ∅)〉 → 〈(∅, X+)〉 has no upward inner
names and no downward outer names, and has a prime outer interface.

An important prime bigraph is mergem : m → 1, it has no nodes and it maps m

sites to an unique root. A bigraph G : n → 〈m, (X−, X+)〉 without inner names, it
can be simply converted in a prime bigraph as follows: (mergem ⊗ id(X−,X+)) ◦G.

Definition 3.4 (discrete bigraph) A bigraph D is discrete if it has no edges and
the link map is a bijection. That means all points are open, no pair of points is a
peer and no link is idle.

The discreteness is well-behaved, and preserved by composition and tensor products.
It is easy to see that discrete bigraphs form a monoidal sub-precategory of ′DBig.

Definition 3.5 (ion, atom and molecule) For any non atomic control K with
arity k and a pair of sequence ~x− and ~x+ of distinct names, whose overall length
is k, we define the discrete ion K(v)~x

+

~x− : 〈(~x−, ∅)〉 → 〈(∅, ~x+)〉 as the bigraph with
a unique K-node v, whose ports are separately linked to ~x− or to ~x+. We omit v

when it can be understood.

84

Grohmann, Miculan

For a prime discrete bigraph P with outer names (Y −, Y +) the composite (K~x+

~x−⊗
id(Y −,Y +)) ◦ P is a discrete molecule. If K is atomic, we define the discrete atom
K~x+

~x− : (~x−, ∅) → 〈(∅, ~x+)〉; it resembles an ion, but has no site.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition
of ω⊗id1 with a discrete one. Often we omit · · ·⊗idI in the compositions, when there
is no ambiguity; for example we write mergem◦G to mean (mergem⊗id(X−,X+))◦G

and K~x+

~x− ◦P to mean (K~x+

~x−⊗id(Y −,Y +))◦P . Note that every atom and every molecule
are prime, furthermore an atom is also ground, but a molecule is not necessarily
ground, since it may have sites.

Now, we define some variants of the tensor product, whose can allow the sharing
of names. Process calculi often have a parallel product P | Q, that allows the
processes P and Q to share names. In directed bigraphs, this sharing can involve
inner downward names and/or outer upword names, as described by the following
definitions.

Definition 3.6 (sharing products) The outer sharing product, inner sharing
product and sharing product of two link graphs Ai : Xi → Yi (i = 0, 1) are de-
fined as follows:

(X−, X+) 	 (Y −, Y +) , (X−] Y −, X+ ∪ Y +)

(X−, X+) � (Y −, Y +) , (X− ∪ Y −, X+] Y +)

A0 	 A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) : X0 ⊗X1 → Y0 	 Y1

A0 � A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) : X0 � X1 → Y0 ⊗ Y1

A0 ‖ A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) : X0 � X1 → Y0 	 Y1

defined when their interfaces are defined and Ai have disjoint node and edge sets.
The outer sharing product, inner sharing product and sharing product of two

bigraphs Gi : Ii → Ji are defined by extending the corresponding products on their
link graphs with the tensor product on widths and place graphs:

〈m,X〉 	 〈n, Y 〉 , 〈n + m,X 	 Y 〉 〈m,X〉 � 〈n, Y 〉 , 〈n + m,X � Y 〉

G0 	 G1 , 〈GP
0 ⊗GP

1 , GL
0 	 GL

1 〉 : I0 ⊗ I1 → J0 	 J1

G0 � G1 , 〈GP
0 ⊗GP

1 , GL
0 � GL

1 〉 : I0 � I1 → J0 ⊗ J1

G0 ‖ G1 , 〈GP
0 ⊗GP

1 , GL
0 ‖ GL

1 〉 : I0 � I1 → J0 	 J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is simple to verify that 	, � and ‖ are associative, with unit ε.
Another way of constructing a sharing product of two bigraphs G0, G1 is to

disjoin the names of G0 and G1, then take the tensor product of the two bigraphs
and finally merge the name again:

Proposition 3.7 Let G0 and G1 be bigraphs with disjoint node and edge sets. Then

G0	G1 = σ(G0⊗τG1ζ) G0�G1 = (G0⊗τG1ζ)δ G0 ‖ G1 = σ(G0⊗τG1ζ)δ

85

Grohmann, Miculan

where the substitution σ and τ are defined in the following way: if zi (i ∈ n) are
the upward outer names shared by G0 and G1, and wi are fresh names in bijection
with the zi, then τ(zi) = wi and σ(wi) = σ(zi) = zi (i ∈ n). The substitution δ and
ζ are defined in a very similar way, but acting on the downward inner names.

Definition 3.8 (prime products) The prime outer sharing product and prime
sharing product of two bigraphs Gi : Ii → Ji are defined as follows:

〈m, (X−, X+)〉 & 〈n, (Y −, Y +)〉 , 〈(X−] Y −, X+ ∪ Y +)〉

G0 & G1 , merge(width(J0)+width(J1)) ◦ (G0 	 G1) : I0 ⊗ I1 → J0 & J1

G0 | G1 , merge(width(J0)+width(J1)) ◦ (G0 ‖ G1) : I0 � I1 → J0 & J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is easy to show that & and | are associative, with unit 1 when applied to prime
bigraphs. Note that for a wiring ω and a prime bigraph P , we have ω & P = ω 	 P

and ω | P = ω ‖ P , because in this case these products have the same meaning.
Now, we can describe discrete bigraphs, which are the complement of wirings:

Theorem 3.9 (discrete normal form) (i) Every bigraph G can be expressed
uniquely (up to iso) as: G = (ω ⊗ idn) ◦ D ◦ (ω′ ⊗ idm), where D is a dis-
crete bigraph and ω, ω′ are two wirings satisfying the following conditions:
• in ω, if two outer downward names are peer, then their target is an edge;
• in ω′ there are no edges, and no two inner upward names are peer (i.e., on in-

ner upward names ω′ is a renaming, but outer downward names can be peer).

(ii) Every discrete bigraph D : 〈m, (X−, X+)〉 → 〈n, (Y −, Y +)〉 may be factored
uniquely (up to iso) on the domain of each factor Di, as:

D = α⊗ ((D0 ⊗ · · · ⊗Dn−1) ◦ (π ⊗ iddom(~D)))

with α a renaming, each Di prime and discrete, and π a permutation.

Proof. For the first part, consider a bigraph G : 〈n, (X−, X+)〉 → 〈m, (Y −, Y +)〉.
We divide G in three parts: a discrete D : 〈n, (Z−, Z+)〉 → 〈m, (W−,W+)〉 and
two wirings ω : (W−,W+) → (Y −, Y +) and ω′ : (X−, X+) → (Z−, Z+) satisfying
the previous conditions. We proceed by cases:

p ∈ P , linkG(p) = e ∈ E: we add a fresh name we ∈ W+ and define linkD(p) = we

and linkω(we) = e;

p ∈ P , linkG(p) = y ∈ Y +: we add a fresh name wy ∈ W+ and define linkD(p) =
wy and linkω(wy) = y;

p ∈ P , linkG(p) = x ∈ X−: this case is analogous to the previous one;

y ∈ Y −, linkG(y) = e ∈ E: we define linkω(y) = e;

x ∈ X+, linkG(y) = e ∈ E: we add a fresh name ze ∈ Z+, a fresh name we ∈ W+

and define linkω′(x) = ze, linkD(ze) = we, linkω(we) = e;

y ∈ Y −, linkG(y) = x ∈ X−: we add a fresh name wx ∈ W−, a fresh name zx ∈ Z−

and define linkω(y) = wx, linkD(wx) = zx and linkω′(zx) = x;

x ∈ X+, linkG(x) = y ∈ Y +: this case is analogous to the previous one; it is suffi-
cient to invert the direction of links and swap the rule of ω with ω′.

86

Grohmann, Miculan

Note that there are no idle names in Z−, Z+, W− and W+, so those sets are formed
only by the fresh names defined in this proof. Furthermore, the three conditions
above holds because we create a fresh name every time we need one.

The proof of the second part is easy. Since the outer interface of D has width
n, we can decompose D in n discrete and prime parts, obtaining D0 ⊗ · · · ⊗Dn−1.
The renaming α describe the connections between the inner interface and the outer
one. Finally the permutation π gives the right sequence of the sites, so we can take
the tensor product of Di (i = 0,n− 1) in any order. 2

We call this unique factorization discrete normal form (DNF). The DNF ap-
plies to abstract bigraphs as well, and indeed it will play an important part in the
complete axiomatization of DBig, as we will discuss in the next section.

Note that a renaming is discrete but not prime (since it has zero width); this is
why the factorization in Theorem 3.9(ii) has such a factor. This unique factorization
depends on the fact that the prime bigraphs have no upward inner names and
downward outer names. In the special case that D is ground, the factorization in
Theorem 3.9(ii) is simply D = d0 ⊗ · · · ⊗ dn−1, that is a product of discrete and
prime ground bigraphs.

4 Algebraic structure of DBig

In this section we describe a sound and complete axiomatization for directed ab-
stract bigraphs. Furthermore we give a normal form for discrete bigraphs, that is
useful to prove the completeness of the axiomatization.

First we introduce the algebraic signature, that is a set of elementary bigraphs
able to define any other bigraph (Figure 1).

We have to show that all bigraphs can be constructed from these elementary
ones by composition and tensor product. Before giving a formal result, we provide
an intutive explanation of the meaning of these elementary bigraphs.

• The first three bigraphs build up all wirings, i.e. all the link graphs having no
nodes. Indeed, all substitutions (fusions, resp.) can be obtained as tensor products
of elementary substitutions My

X (fusions OY
x , resp.); the tensor products of single-

ton substitutions My
x and/or singleton fusions Ox

y give all renamings. The compo-
sition and the tensor product of substitutions, fusions and closures give all wirings.

• The next three bigraphs define all placings, i.e. all place graphs having no nodes;
for example mergem : m → 1, merging m sites in a unique root, are defined as:

merge0 , 1 mergem+1 , merge ◦ (id1 ⊗mergem).

Notice that merge1 = id and merge2 = merge, and that all permutations
π : m → m are constructed by composition and tensor from the γm,n.

• Finally, for expressing any direct bigraph we need to add only the discrete ions
K~x+

~x− . In particular, we can express any discrete atoms as K~x+

~x− ◦ 1.

The following proposition shows that every bigraph can be expressed in a normal
form, called (again) discrete normal form (DNF). We will use D, Q and N to denote
primes, discrete prime bigraphs, and the discrete molecules respectively.

87

Grohmann, Miculan

y

x

H
N

x
y :(∅, y) → (x, ∅) closure

y

x1x2. . .xn

. . . My
X :(∅, X) → (∅, y) substitution

x

y1y2. . .ym

. . . OY
x :(x, ∅) → (Y, ∅) fusion

1:ε → 1 a barren root

1 2 merge:2 → 1 mapping 2 sites in 1 root

m+1 . . . m+n 1 . . . n γm,n:m + n → n + m swapping m with n

y1y2. . . yn

x1x2. . .xm. . .

. . .
K~x

~y :〈(~y, ∅)〉 → 〈(∅, ~x)〉 a discrete ion

Fig. 1. Elementary Bigraphs

Proposition 4.1 (discrete normal form) In DBig every bigraph G, discrete D,
discrete and prime Q and discrete molecule N can be described by an expression of
the respective following form:

G = (ω ⊗ idn) ◦D ◦ (ω′ ⊗ idm) (1)
where ω, ω′ satisfy the conditions given in Theorem 3.9(i);

D = α⊗ ((Q0 ⊗ · · · ⊗Qn−1) ◦ (π ⊗ iddom(~Q))) (2)

Q = (mergen+p ⊗ id∅,Y +) ◦ (idn ⊗N0 ⊗ · · · ⊗Np−1) ◦ (π ⊗ id(Y −,∅)) (3)

N = (K~x+

~x− ⊗ id∅,Y +) ◦Q. (4)

Furthermore, the expression is unique up to isomorphisms on the parts.

Proof. The proof is quite similar to the proof of Theorem 3.9. 2

We can use these equations for normalizing any bigraph G as follows; first, we
apply equations (1), (2) to G once, obtaining an expression containing discrete
and prime bigraphs Q0, . . . , Qn−1. These are decomposed further using equations
(3), (4) repeatedly: each Qi is decomposed into an expression containing molecules
Ni,0, . . . , Ni,pi−1, each of which is decomposed in turn into an ion containing another
discrete and prime bigraph Q′

i,j . The last two steps are repeated recursively until
the ions are atoms. Note that the unit 1 is a special case of Q when n = p = 0.

In Figure 2 we give a set of axioms which we prove to be sound and complete.
Each of these equations holds only when both sides are defined; in particular,

recall that the tensor product of two bigraphs is defined only if the name sets are
disjoint. It is important to notice also that for ions only the renaming axiom is

88

Grohmann, Miculan

Categorical Axioms
A ◦ id = A = id ◦A A ◦ (B ◦ C) = (A ◦B) ◦ C

A⊗ idε = A = idε ⊗A A⊗ (B ⊗ C) = (A⊗B)⊗ C

γI,ε = idI γJ,I ◦ γI,J = idI⊗J

(A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)
γI,K ◦ (A⊗B) = (B ⊗A) ◦ γH,J (where A : H → I,B : J → K)

γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K)

Link Axioms
H
N

x
y ◦ My

z = H
N

x
z Oz

x ◦ H
N

x
y = H

N
z
y Ox ◦ H

N
x
y ◦ My = idε

Mz
(Y]y) ◦ (id(∅,Y) ⊗ My

X) = Mz
(Y]X) (id(Y,∅) ⊗ OX

y) ◦ O(Y]y)
z = O(X]Y)

z

Place Axioms
merge ◦ (1⊗ id1) = id1 merge ◦ γ1,1 = merge

merge ◦ (merge⊗ id1) = merge ◦ (id1 ⊗merge)

Node Axioms

(id1 ⊗ α) ◦K~x+

~x− = K
α(~x+)
~x− K~x+

~x− ◦ (id1 ⊗ α) = K~x+

α(~x−)

Fig. 2. Axiomatization for the abstract directed bigraphs.

needed (because the names are treated positionally).

Theorem 4.2 (Completeness of the axiomatization) Let us consider two ex-
pressions E0, E1 constructed from the elementary bigraphs by composition and ten-
sor product. Then, E0 and E1 denote the same bigraph in DBig if and only if the
equation E0 = E1 can be proved by the axioms in Figure 2.

Proof. The proof is similar to that of [6, Theorem 10.2]. The “if” direction is
simple to prove, since it requires to check that each axiom is valid. The “only if”
direction is in two steps. First, we prove by induction on the structure of expressions,
that the equality between an expression and its DNF is derivable from the axioms.
Next, since DNFs are taken up to iso, we have to show that the equality between
isomorphic DNFs is provable from the axioms. This is proved by showing that the
axioms can prove the isomorphisms of the components of a DNF, which are ions,
discrete and prime bigraphs, and discrete bigraphs. 2

5 Application: the λ-calculus

In this section we describe an encoding of both the call-by-name and the call-by-
value λ-calculus. Recall that the set Λ of λ-terms are the terms up-to α-equivalence
generated by the following grammar:

M,N ::= x | λx.M | MN.

A value is either a λ-abstraction or a variable; values are ranged over by V .

89

Grohmann, Miculan

varx

x

var

lamx

x

λ

app

app

subx,y

x y

sub

defx

x

def

Fig. 3. The signature for the λ-calculus.

The call-by-name reduction semantics is defined by the following rules

(λx.M)N → M [N/x] (β)
M → M ′

MN → M ′N

N → N ′

MN → MN ′

while the call-by-value reduction semantics is defined by the following rules

(λx.M)V → M [V/x] (βv)
M → M ′

MN → M ′N

N → N ′

MN → MN ′

In Figure 3 we give a signature for representing the λ-calculus “with single
substitutions”, that is where a substitution is performed once for each variable
occurrence. This signature resembles Milner’s encoding using binding bigraphs, but
in directed bigraphs we do not need to introduce further binding structures.

We can define a translator operator J·K : Λ → DBig as follows:

JxK = varx Jλx.MK = lamx ◦ (JMK 	 Mx) JMNK = app ◦ (JMK 	 JNK)

Intuitively, a λ-term M is represented by a ground bigraph JMK : ε → 〈(∅, X+)〉
whose place hierarchy reflects the syntactic tree of M and the outer upwards names
X+ are the free variables of M . Each λ-expression is represented by a control and
a local resource which is bound to a upward name in the inner interface.

Proposition 5.1 Let M,N be two λ-terms; then, M ≡α N iff JMK = JNK.

Let us now see how we can represent the two semantics of the λ-calculus. For
the call-by-name semantics, we define the controls lam and def as passive, sub and
app as active. The reaction rules are given in Figure 4.

For the call-by-value λ-calculus, we have to replace the Appcbn rule with two
rules Appcbv-var and Appcbv-lam (Figure 5) corresponding to the two cases of values
where the application can be performed.

For both variants, we can prove the following result:

Proposition 5.2 Let M,M ′ be two λ-terms.

(i) If M → M ′ then JMK →∗ JM ′K;

(ii) If JMK →∗ JM ′K then M →∗ M ′.

Proof. By induction on the lenght of traces.

(i) The application of β (or βv) is encoded by applying Appcbn (or one of Appcbv-var

and Appcbv-lam) on the correct sub-bigraph, i.e. the one which encodes the right

90

Grohmann, Miculan

app

λ

0

x

1

app ◦ (lamx 	 id1) → subx,y ◦ (id1 	 defy)

sub

def

1

x

0

Appcbn

sub

def

10

subx,y ◦ (id1 	 Mx 	 defy) → id1

0 Subdispose

def

1

x

var

HN
x
y ◦ (vary 	 defy) → HN

x
y ◦ (id1 	 defy)

1

def

1

x

Subvar

Fig. 4. Reactions for the call-by-name λ-calculus.

app

λ

0

x

var

z

app ◦ (lamx 	 varz) → subx,y ◦ (id1 	 (defy ◦ varz))

sub

def

var

z

x

0

Appcbv-var

app

λ

0

x

λ

1

z

app ◦ (lamx 	 lamz) → subx,y ◦ (id1 	 (defy ◦ lamz))

sub

def

λ

1

zx

0

Appcbv-lam

Fig. 5. Reactions for the call-by-value λ-calculus.

91

Grohmann, Miculan

side of the rule. Next we use Subvar for every occurrence of x in M , finally we
apply Subdispose to eliminate the unnecessary controls sub and def .

(ii) First of all note that, by definition of J·K, JM ′K has no sub or def controls. If
JMK →∗ JM ′K, in the trace there are one or more application of Appcbn (or
Appcbv-var and Appcbv-lam), so we use the β (or βv) rule on the corresponding
λ-subterm. We can ignore the Subvar and Subdispose rules because the substi-
tutions in λ-calculus are performed instantaneously. 2

6 Conclusions

In this paper we have given a sound and complete axiomatization of the precategory
of directed bigraphs, a bigraphical model which subsumes and generalizes both Mil-
ner’s and Sassone-Sobociński variants. We have used this axiomatization for encod-
ing the λ-calculus, both in call-by-name and call-by-value variants. It is interesting
to notice that no further extensions (such as binding signatures) are needed.

We plan to use this axiomatization for representing other calculi, in particular
calculi with resources, locations, etc., which can be represented by edges. Interest-
ing candidates could be the Fusion calculus [9] and the ν-calculus [10]; it will be
interesting to see which kind of wide transition systems we would obtain.

The new discrete normal form, and associated composition operations, presented
in this paper can be useful in view of possible applications and extensions of logics
and matching tools for bigraphs, in the line of [1,2]. Another future work is to give
a 2-categorical definitions of directed link graphs.

References

[1] Birkedal, L., T. C. Damgaard, A. Glenstrup and R. Milner, Matching of bigraphs, in: Proceedings of
Graph Transformation for Verification and Concurrency 2006, 2007.

[2] Conforti, G., D. Macedonio and V. Sassone, Spatial logics for bigraphs, in: Proc. ICALP, Lecture Notes
in Computer Science 3580 (2005), pp. 766–778.

[3] Grohmann, D. and M. Miculan, Directed bigraphs: theory and applications, Technical Report
UDMI/12/2006/RR, University of Udine (2006). http://www.dimi.uniud.it/miculan/Papers/.

[4] Grohmann, D. and M. Miculan, Directed bigraphs, in: Proc. XXIII MFPS, ENTCS 173 (2007), pp.
121–137.

[5] Jensen, O. H. and R. Milner, Bigraphs and transitions, in: Proc. POPL, 2003, pp. 38–49.

[6] Jensen, O. H. and R. Milner, Bigraphs and mobile processes (revised), Technical report UCAM-CL-
TR-580, Computer Laboratory, University of Cambridge (2004).

[7] Milner, R., Bigraphical reactive systems, in: K. G. Larsen and M. Nielsen, editors, Proc. 12th CONCUR,
Lecture Notes in Computer Science 2154 (2001), pp. 16–35.

[8] Milner, R., Pure bigraphs: Structure and dynamics, Inf. Comput. 204 (2006), pp. 60–122.

[9] Parrow, J. and B. Victor, The fusion calculus: Expressiveness and symmetry in mobile processes, in:
Proc. LICS’98, IEEE (1998), pp. 176–185. http://www.docs.uu.se/~victor/tr/fusion.shtml

[10] Pitts, A. and I. Stark, Observable properties of higher order functions that dynamically create local
names, or what’s new?, in: Proc. MFCS, Lecture Notes in Computer Science 711 (1993), pp. 122–141.

[11] Sassone, V. and P. Sobociński, Reactive systems over cospans, in: Proc. LICS (2005), pp. 311–320.

92

http://www.dimi.uniud.it/miculan/Papers/
http://www.docs.uu.se/~victor/tr/fusion.shtml

TERMGRAPH 2007

Intera
tion Netswith nested pattern mat
hingShinya Satoa;1 and Abubakar Hassanb;2a Fa
ulty of E
onoinformati
sHimeji Dokkyo University7-2-1 Kamiohno, Himeji-shi, Hyogo 670-8524, JAPANb Department of Computer S
ien
eKing's College LondonStrand, London WC2R 2LS, UKAbstra
tRedu
tion rules in Intera
tion Nets are
onstrained to pattern mat
h exa
tly one argument at a time.Consequently, a programmer has to introdu
e auxiliary rules to perform more sophisti
ated mat
hes. Wepropose an extension of Intera
tion Nets whi
h fa
ilitate nested pattern mat
hing on intera
tion rules. Wethen de�ne a pra
ti
al
ompilation s
heme from extended rules to pure intera
tion rules. We a
hieve asystem that provides
onvenient ways to express Intera
tion Net programs without de�ning auxiliary rules.Keywords: Intera
tion nets, pattern mat
hing, programming language design.1 Introdu
tionIntera
tion Nets [5℄
an be
onsidered as a graphi
al{or visual{programming lan-guage. Programs are expressed as graphs, and
omputation is graph redu
tion.From another perspe
tive, Intera
tion Nets are also a low level implementation lan-guage: we
an de�ne systems of Intera
tion Nets that are instru
tions for the targetof
ompilation s
hemes of other programming languages. For instan
e, Intera
tionNets have been used for the implementation of optimal redu
tion [4,6℄ and othereÆ
ient implementations of the �-
al
ulus [8℄. In addition, there has been variousimplementations of Intera
tion Nets [7,9℄. Despite that we
an already programin Intera
tion Nets (they are Turing
omplete), they still remain far from beingused as a programming language. Drawing an analogy with fun
tional program-ming, we only have the pure �-
al
ulus that is without synta
ti
 sugar,
onstants,data-stru
tures, et
.1 shinya�himeji-du.a
.jp2 abubakar.hassan�k
l.a
.ukThis paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

mailto:shinya@himeji-du.ac.jp
mailto:abubakar.hassan@kcl.ac.uk

Sato and HassanIn this paper we take step towards developing a ri
her language based on In-tera
tion Nets. Intera
tion Nets have a very primitive notion of pattern mat
hingsin
e only two agents
an intera
t at a time. Consequently, many auxiliary agentsand rules are needed to implement more sophisti
ated mat
hes. These auxiliariesare implementation details and should be generated automati
ally other than bythe programmer. To a
hieve this, we extend Intera
tion Nets to allow rules withnested patterns to be de�ned. We then give a
ompilation s
heme from extendedto ordinary intera
tion rules.There has been several works that extend Intera
tion Nets in some way (seeSe
tion 6.2). Sinot and Ma
kie's Ma
ros for Intera
tion Nets [10℄ are quite
loseto what we present in this paper. They allow pattern mat
hing on more thanone argument by relaxing the restri
tion of one prin
ipal port per agent. The maindi�eren
e with our work is that their system does not allow nested pattern mat
hing.Our system fa
ilitates nested/deep pattern mat
hing of agents.The rest of this paper is organised as follows: In the next se
tion we give a briefintrodu
tion to Intera
tion Nets. In Se
tion 3 we motivate our work through anexample. We give the proposed extensions in Se
tion 4, followed by the
ompilations
hemes in Se
tion 5. In Se
tion 6 we dis
uss some implementation issues. Finally,we
on
lude the paper in Se
tion 7
2 Intera
tion NetsWe review the basi
 notions of Intera
tion Nets. See [5℄ for a more detailed presen-tation. Intera
tion Nets are spe
i�ed by the following data:� A set � of symbols. Elements of � serve as agent (node) labels. Ea
h symbolhas an asso
iated arity ar that determines the number of its auxiliary ports. Ifar(� 2 �) = n, then � has n+1 ports: n auxiliary ports and a distinguished one
alled the prin
ipal port. ���� ����We use the textual notation x0 � �(x1; :::; xn) to represent an agent � where x0is the prin
ipal port and x1; :::; xn are its auxiliary ports.� A net built on � is an undire
ted graph with agents at the verti
es. The edgesof the net
onne
t agents together at the ports su
h that there is only one edgeat every port. A port whi
h is not
onne
ted is
alled a free port.� Two agents (�; �) 2 ���
onne
ted via their prin
ipal ports form an a
tive pair(analogous to a redex). An intera
tion rule ((�; �) ! N) 2 R repla
es the pair(�; �) by the net N . All the free ports are preserved during redu
tion, and thereis at most one rule for ea
h pair of agents. The following diagram illustrates theidea, where N is any net built from �.94

Sato and Hassan�	
 ��
�� ���� �� ��
�� ����We represent this rule textually as �(x1; :::; xn) 1 �(y1; :::; ym)! N . The order ofwriting the a
tive agents in this textual form is not important. The same rule
anbe written as �(y1; :::; ym) 1 �(x1; :::; xn) ! N . We use the notation N1) N2for the one step redu
tion and)� for its transitive and re
exive
losure.Intera
tion Nets have the following property [5℄:� Strong Con
uen
e: Let N be a net. If N) N1 and N) N2 with N1 6= N2,then there is a net N3 su
h that N1) N3 and N2) N3.3 MotivationsIn this se
tion, we motivate our work by investigating how we
an translate afun
tion with pattern mat
hing into Intera
tion Nets.Example 3.1 Our example is the following de�nition of a fun
tion that returnsthe last element of a list:fun lastElt [x℄ = x| lastElt (x::xs) = lastElt xs;If we
onsider a fun
tional programming language as an orthogonal term rewritingsystem, we
an translate programs into Intera
tion Nets [3℄. In this way, if we takeboth the name of the fun
tion and the �rst argument as agents, we
an representthe above fun
tion as intera
tion rules:�������������� �������� ������ ������� �������������� ���������������� � �������������� �������� ! !" # " # " # " #$%& $%& $%& $%&However, these rules are not valid in Intera
tion Nets as the left hand side (LHS)of a rule must be a net with exa
tly two agents (a
tive pair).Therefore, to en
ode this example in intera
tion nets, we have to introdu
eauxiliary agents and rules:
'()*+'*'()*+'* ,,-./)-./)012012'()*+'*'()*+'* -./)-./) 012012012 012012 34'34' -./)-./)5 6 78 5 6 78 5 65 6 5 69:; 9:; 5 6 9:; 9:;This set of rules will
ompute and return the last element of a list. We arguethat the introdu
tion of the auxiliary agents to the system is not satisfa
tory from95

Sato and Hassana programmers perspe
tive. Programmers want to write simpler programs ratherthan more
ompli
ated ones. To solve this problem, we extend the de�nition ofrules to fa
ilitate nested pattern mat
hing.4 Intera
tion rules for nested patterns (INP)4.1 An extension of the de�nition of intera
tion rulesIn this se
tion we present our framework INP that extends ordinary intera
tionrules (ORN) so that we
an perform rewritings between nested agents. The maindi�eren
e from ORN is that we allow the left hand side of a rule to
ontain morethan two agents. The de�nition of agents and nets remain the same as for ORN.De�nition 4.1 A nested a
tive pair P is indu
tively de�ned as follows:Base: Every a
tive pair in ORN is a nested a
tive pair<=<= >=>=represented textually as: h�(x1; :::; xn) 1 �(y1; :::; ym)i.Step: A net obtained as a result of
onne
ting the prin
ipal port of some agent toa free port in a nested a
tive pair P is also a nested a
tive pair.?@AB BBCWe represent this nested a
tive pair textually as hP; yj �
(z1; :::; zl)i.De�nition 4.2 An intera
tion rule in INP is given by P ! N where P is a nesteda
tive pair. All the free ports are preserved during redu
tion, and there is at mostone rule with P in any given system.Proposition 4.3 ORN � INP.Proof. All rules P ! N where P
ontains just two agents (a
tive pair) are validORN rules. These a
tive pairs fall into the base de�nition of nested a
tive pairs.2We aim to extend ORN in a
onservative way and retain the property of strong
on
uen
e. For this purpose, we introdu
e a
ondition that restri
ts the formationof the set of intera
tion rules in INP.De�nition 4.4 A set of nested a
tive pairs P is sequential if and only if, whenhP; yj �
(z1; :::; zl)i 2 P, then� for the nested pair P , P 2 P and,� for all free ports y in P ex
ept the yj and for all agents �, hP; y � �(w1; :::; wn)i 62P. 96

Sato and HassanAs an example,
onsider the following nested a
tive pair P in a sequential set P:
DEDED FDGH IJ KL MNOP IQRrepresented textually as h�(x1; :::; xn) 1 �(y1; :::; ym); y1 �
(z1; :::; zl)i. Then we
an not have any other nested a
tive pair (�; �) su
h that the port y1 is free. Thus,the following de�nitions violet the
ondition of the set P:

STUSTU SVS WSXY Z[\]_̂ VSVS WSXY Z[\]_̂ VS WSà XY Z[\]VSVS WSà XY Z[\]STUSTU bcb db efgh ij klcbcb db efgh ij kl cb dbmn efgh ijcbcb dbmn efgh ijbopbop bopFor
larity, we draw lines and triangles on auxiliary ports that
onne
t to nestedagents. As an example, we represent a nested a
tive pair hP; ym �
0(w1; :::; wk)igraphi
ally as follows: qr rr
sr tuv

qr rr
sr tuvNote that this nested a
tive pair belongs to the set P be
ause P 2 P.De�nition 4.5 A set of rules R in INP is well-formed if and only if,� there is a sequential set whi
h
ontains every nested a
tive pair of the LHS in R,� for every rule P ! N in R, there is no intera
tion rule P 0 ! N 0 in R su
h thatP 0 is a subnet of P .Example 4.6 The rule set in Example 3.1 is well-formedwxyz{wz |}~y ��wwxyz{wzwxyz{wz |}~y|}~y ��w��wwxyz{wzwxyz{wz |}~y|}~y ��w��w� � � � wxyz{wz |}~y|}~y wxyz{wz |}~y�� � � ���� ���wxyz{wz |}~y|}~ywxyz{wzwxyz{wz |}~y|}~y|}~y|}~y wxyz{wzwxyz{wz |}~y|}~y��� � � ���� ��� ��� ���and the following
omputation
an be performed:97

Sato and Hassan������� �������� ������� �������������� ���
�

���� �������� ������� �����
���� ���

� ����
�������������� ���������������� �������������� ���������������������������� ������

�
�������� ���������������� �������������� ���������

�������� ������
� ��������In the above example, the rewriting is strongly
on
uent be
ause there is no
riti
al pair. We loose this property if there are more than two rules that
an beapplied to the same net.Example 4.7 We
an en
ode the following de�nition of the parallel-or fun
tionpor: por(True; y) = Truepor(y; True) = Truepor(False; y) = ypor(y; False) = yas a set of INP rules:

��� ������� ¡��� ������� ¡��� ¡ ��� ������� ¡��� ������� ¡��� ¡
��� ����¢�£¡¢�£¡ ¢�£¡¢�£¡ ��� ����¢�£¡¢�£¡ ¢�£¡¢�£¡¢�£¡¢�£¡ ¤¤ ¤¤¥ ¦§ ¥ ¦§ ¥ ¨© ¥ ¨©

¥ ¨©¥ ¦§ ¥ ¦§ ¥ ¨©However, this is not a well-formed set of rules be
ause there is no sequential set whi
h
ontains both hpor(x) 1 Pair(y1; y2); y1 � Truei and hpor(x) 1 Pair(y1; y2); y2�Truei. Therefore, the redu
tion is not strongly
on
uent (but still
on
uent in thisexample).
ª«¬ ­®̄¬°¬±²°¬±²

°¬±²°¬±²³³
®́µ¶²®́µ¶² · ®́µ¶²®́µ¶² ¸ °¬±²°¬±²¹On the other hand, the following rule set of the or fun
tion is well-de�ned:98

Sato and Hassanº» ¼½¾¿ ÀÁ¿ÂÃ Á¿ÂÃÄ ÅÆ Ä ÅÆ ¼½¾¿
Á¿ÂÃ Á¿ÂÃº» Ç½ÈÉÃÄ Ä

¼½¾¿ Ç½ÈÉÃÇ½ÈÉÃ
º» Ç½ÈÉÃÄ Ä

º» ¼½¾¿ ÀÁ¿ÂÃ Á¿ÂÃÄ ÅÆ Ä ÅÆº» ¼½¾¿ ÀÀÁ¿ÂÃÁ¿ÂÃ Á¿ÂÃÁ¿ÂÃÄ ÅÆ Ä ÅÆ ¼½¾¿
Á¿ÂÃÁ¿ÂÃ Á¿ÂÃÁ¿ÂÃº» Ç½ÈÉÃÇ½ÈÉÃÄ Ä

¼½¾¿ Ç½ÈÉÃÇ½ÈÉÃÇ½ÈÉÃÇ½ÈÉÃ
º» Ç½ÈÉÃÇ½ÈÉÃÄ ÄProposition 4.8 (Strong Con
uen
e) If a given rule set R in INP is well-formed, then the redu
tion in R is strongly
on
uent.Proof. Assume that P ! N 2 R. There are two
ases where
riti
al pairs
anarise for a net whi
h
ontains P :
ase 1: there is no overlap between rules. We assume that there is a rule P1 !N1 2 R where P1 does not overlap with P . In this
ase, the redu
tion is strongly
on
uent: ÊËÌ ËÍÎËÌ ËÍÎËÏ ËÐÑËÏ ËÐÑ ËÒ ËÐÑËÒ ËÐÑËÓ ËÔÕËÔÕËÓ ËÔÕËÔÕËÔÕËÔÕ ÊÖ Ö
ase 2: there are overlaps between rules.
ase 2.1: We assume that there is a rule P2 ! N2 2 R where P2 is a subnet ofP .

×Ø ×ÙÚ×Ø ×ÙÚ Û ×Ü×Ü
××ÝÞ××ÝÞ

ß
This
ase
an not arise if R is well formed. Therefore P2 ! N2 62 R
ase 2.2: We assume that there is a rule P3 ! N3 2 R where P3
ontains thesubnet of P 0.

à
àáâãà àä à

àåæ çà àèéêë ìíîï ðà
àáâãà àä à

àåæ çà àèéêë ìíîïï ððThere is no sequential set whi
h
ontains both P and P3, therefore P3 ! N3 62R. 299

Sato and Hassan5 TranslationIn this se
tion, we de�ne the translation fun
tion T from intera
tion rules withnested a
tive pairs to intera
tion rules with only a
tive pairs:� If a nested a
tive agent
ontains an a
tive pair of just two agents, then thetranslation is the identity:ñ òó ôóôó õö÷øù úûüý úûüýö÷øù ó óþ òó ôó õö÷øù úûüý úûüýö÷øù ó óþ òó ôóôó õö÷øù úûüý úûüýö÷øù ó ó ÿ� The translation of a rule P ! N whereP = h�(p1; :::; pw) 1 �(q1; ::; qk; ::; qu); qk �
(z1; :::; zl); ai where a is a sequen
eof agents, generates the following rules:� �(p1; :::; pw) 1 �(q1; ::; qk; ::; qu) ! qk � ��(q1; ::; qk�1; qk+1; ::; qu; p1; :::; pw)where �� is a new agent named from a
on
atenation of the LHS nested a
tivepair agents. Sin
e qk is
onne
ted to the prin
ipal port of
, an a
tive pair(��;
) will be formed.�
��(q1; ::; qk�1; qk+1; ::; qu; p1; :::; pw) 1
(z1; :::; zl); a�! N . This rule is re
ur-sively translated to obtain a rule with just an a
tive pair.Graphi
ally, this translation is given by:�� � ������	
 � ��������	
 � �
� �� ��
���������������� �� �

�� � ������	
 � ��������	
 � �
� �� ��
���������������� �� �

���� ���� ����� � !�� � "#$%&'()$*&'+) ()"#$%&'$*&'+),-./ ,-./0 1 23456789 0 00:;0 0<
=23456789 0 0>?

@0 1 23456789 0 00:;0 0<
=23456789 0 0>?

@
100

Sato and HassanExample 5.1 We give the translation of the fun
tion in Example 3.1 that
omputesand returns the last element of a list.A
BCDEFBEGHIDBCDEFBEGHIDJ BCDEFBEBCDEFBE GHIDGHIDBCDEFBEBCDEFBE GHIDGHID KLBKLBA BCDEFBEGHIDBCDEFBEGHIDMBCDEFBEGHIDBCDEFBEGHIDJ BCDEFBEBCDEFBE GHIDGHIDBCDEFBEBCDEFBE GHIDGHID KLBKLBBCDEFBEGHIDBCDEFBEGHIDM N

BCDEFBE GHIDKLBBCDEFBEBCDEFBE GHIDGHIDKLBKLBBCDEFBEBCDEFBE GHIDGHIDKLBKLBO P O P
O P QR O P QR O P O PO P O PO P QR O P QRS TUVWXTW YZ[VYZ[V TUVWXTW YZ[V\] ^] ^_̀a _̀aS TUVWXTW YZ[VYZ[VTUVWXTWTUVWXTW YZ[VYZ[VYZ[VYZ[V TUVWXTWTUVWXTW YZ[VYZ[V\\] ^] ^_̀a _̀a _̀a _̀aTUVWXTWYZ[Vb TUVWXTW YZ[VTUVWXTW YZ[V S TUVWXTWYZ[Vc YZ[V TUVWXTW YZ[V\] ^ de] ^ de] ^ a _̀] ^ a _̀TUVWXTWYZ[VTUVWXTWYZ[Vb TUVWXTWTUVWXTW YZ[VYZ[VTUVWXTWTUVWXTW YZ[VYZ[V S TUVWXTWYZ[VTUVWXTWYZ[Vc YZ[VYZ[V TUVWXTW YZ[V\TUVWXTWTUVWXTW YZ[VYZ[V\\] ^ de] ^ de] ^ a _̀] ^ a _̀TUVWXTWYZ[Vb TUVWXTW YZ[VTUVWXTW YZ[V c f] ^ de] ^ de TUVWXTWYZ[V YZ[V TUVWXTW YZ[V\] ^ a _̀] ^ a _̀TUVWXTWYZ[VTUVWXTWYZ[Vb TUVWXTWTUVWXTW YZ[VYZ[VTUVWXTWTUVWXTW YZ[VYZ[V c f] ^ de] ^ de TUVWXTWYZ[VTUVWXTWYZ[V YZ[VYZ[V TUVWXTW YZ[V\TUVWXTWTUVWXTW YZ[VYZ[V\\] ^ a _̀] ^ a _̀Lemma 5.2 Let R be a well-formed rule set in INP and R1; R2 2 R. Then, a ruleset T[R1℄[T[R2℄
ontains no rule su
h that P ! N1 and P ! N2 where N1 6= N2.Proof. Let R1 = P1 !M1 and R2 = P2 !M2.
ase 1: the a
tive pairs in P1 and P2 are di�erent. In this
ase, distin
t names areintrodu
ed by T for those a
tive pairs respe
tively. Therefore, every LHS of therules generated by re
ursively applying T also have distin
t a
tive pairs.
ase 2: the a
tive pairs in P1 and P2 are the same. Be
ause both P1 and P2belong to the same sequential set, then P1 and P2 have a same sequen
e of agentssu

eeding from the a
tive pair. Therefore, in the set obtained from this sequen
eby using T, there is no rule su
h that P !M1 and P !M2. For the remainingagents, it turns out that there is no su
h rule by applying
ase 1. 2Proposition 5.3 Let R be a well-formed rule set in INP. The set [T[R℄ whereR 2 R is a
orre
t rule set in ORN. 101

Sato and HassanProof. From the de�nition of T, it is
lear that every LHS of rules obtained byusing T
ontains only an a
tive pair. Moreover, by Lemma 5.2, there is no ruleP ! N1 and P ! N2 in the resulting rule set. 2Proposition 5.4 (Conservativity) Let R be a well-formed set of rules in INP. IfP ! N 2 R, then P)� N by using the rules obtained by the translation T[P ! N ℄.Proof. If P is just an a
tive pair, then we
an perform P) N be
ause T[P !N ℄ = P ! N .If P = h�(x) 1 �(y; y); y �
(z); ai where x;y; z are sequen
es of auxiliaryports and a is a sequen
e of agents, thenT[P ! N ℄ = �(x) 1 �(y; y)! ��(x;y) � y; T[
��(x;y) 1
(z); a�! N ℄:By using the �rst rule,�(x) 1 �(y; y); y �
(z); a) ��(x;y) �
(z); a:Applying re
ursively this operation to the rule
��(x;y) 1
(z); a� ! N and thenested agent pair ��(x;y) 1
(z), we will perform P)� N . 26 Dis
ussion6.1 ImplementationIn this se
tion we brie
y dis
uss implementation issues of INP. There are two ap-proa
hes to implement INP. One is to translate into ORN rules then use existingevaluators of Intera
tion Nets. The other is to implement them dire
tly. Here welook at this se
ond option, and show how the main tasks of performing
omputationin this framwork
an be a
hieved. Our aim here is to show that a dire
t implemen-tion of INP
an be done quite easily. We des
ribe a simple method of a
hievingthis.The main tasks of an Intera
tion Net evaluator are to lo
ate the next a
tive pairto redu
e, �nd the mat
hing rule, and apply it to the a
tive pair.Lo
ating the next a
tive pair
an be done lo
ally during rewrite; while rewiringthe ports, we
he
k if an a
tive pair is formed then push it into a sta
k. Redu
tionwill then pop the a
tive pairs from the sta
k and �nd the mat
hing rule to apply.We
an store rules in a hash table with a key formed from an ordered
on
ate-nation of the (LHS) a
tive pair names. Sin
e INP rules
an have more than onea
tive pair of the same agents, we maintain a list su
h that ea
h key maps onto alist of rules that share the same a
tive pair names. We iterate through the list to�nd a rule that mat
hes the stru
ture of the a
tive pair to be redu
ed.Although ORN will �nd the mat
hing rule in
onstant time (ea
h key will onlymap to one rule) the total number of intera
tions I performed in ORN: I(ORN) >I(INP) for a system with nested agents, and I(ORN) = I(INP) if there is no nestedagents. This
omes from the fa
t that ORN introdu
es extra auxiliary rules forpattern mat
hing. 102

Sato and HassanIf we de�ne the
ost of
omputation to be the number of intera
tions performed,then INP provides an eÆ
ient model. However, without empiri
al studies we arenot able to say whi
h system is eÆ
ient in terms of exe
ution speed.6.2 Related WorksIn this se
tion, we dis
uss other approa
hes to nested pattern mat
hing by usingmethods that have been proposed as extensions of Intera
tion Nets.Pattern mat
hing on more than one argument: Sinot and Ma
kie [10℄ intro-du
edMa
ros for Intera
tion Nets and they allow pattern mat
hing on more thanone argument by relaxing the restri
tion of one prin
ipal port per agent. Theirsystem requires all prin
ipal ports of an agent in the LHS net of a rule to be
on-ne
ted to prin
ipal ports of other agents for the purpose of holding the propertyof strong
on
uen
e. Therefore, this system is useful as a
onservative extension.However, we
an hardly en
ode the fun
tion lastElt as it requires nested pat-tern mat
hing. This is be
ause in the
ase that the Cons agent has two prin
ipalports, we have to write all
ases as follows:ghijkgj lmniopgghijkgj lmnighijkgj lmniopgghijkgj lmnighijkgjghijkgj lmniopgopgghijkgjghijkgj lmni ghijkgjghijkgj lmnilmni opglmnilmni ghijkgj lmniq opg
ghijkgjghijkgjghijkgjghijkgj lmnilmnilmnilmni opgopglmnilmnilmnilmni ghijkgjghijkgj lmniqq opgopg rrr

opgopg
ghijkgjghijkgj lmnilmnilmnilmni opglmnilmni

ghijkgj lmniq lmnilmni
ghijkgjghijkgjghijkgjghijkgj lmnilmnilmnilmnilmnilmnilmnilmni opgopglmnilmnilmnilmni

ghijkgjghijkgj lmniqq lmnilmnilmnilmniAlexiv's intera
tion nets with multiple prin
ipal ports (IMNPP) [1℄ is also usefulfor this purpose be
ause this system also allows more than one prin
ipal port peragent. However, intera
tions are still performed only on an a
tive pair. Therefore,in the
ase of nested pattern mat
hing, we have to introdu
e auxiliary agents andrules as in Se
tion 3. As another solution, we
an introdu
e rules between Consand Nil:stuvwxy stuvwxyz zstuvwxywxy stuvwxystuvwxyz z stuvstuvz { |} stuvstuvz {stuvstuvstuvstuvz { |} stuvstuvz { |} y~v��y�y~v��y� stuvwxyz� z�y~v��y�y~v��y�y~v��y�y~v��y� stuvwxystuvwxyz� z� y~v��y�y~v��y� stuvstuvz { |}� y~v��y� stuv�� z { |}y~v��y�y~v��y�y~v��y�y~v��y� stuvstuvz { |}� y~v��y� stuv�� z { |}y~v��y�y~v��y� stuv��� z { |}These
ause
omputation between the list stru
tures even if it is not needed.���������������������������� ����������������
���������������������� ������� ����������������������������� ������������������������������
�������������� ��������������������������������������� ���������������������� ������� ����� ���

�������������� ������ �������� � ���� ��
103

Sato and HassanComputation for nets: Ba
het [2℄ proposed
omputation for nets on intera
tionrules as abbreviations, where nets are
aptured as an agent and redu
tions ofthe agent are realized by the rules
orresponding to the
omputation of the net.As an example of applying this method to nested pattern mat
hing, we
onsiderour example fun
tion lastElt. One solution is to de�ne the agent lastElt byusing other agents that have already been de�ned. It is not simple to �nd a good
ombination with those agents. As another solution, we introdu
e abbreviationsfor list stru
tures: ������������ �������� ����� ��������� � ��������� � � ������������ ��������������������������� �������� ��������������� ����� ��������� � ��������� � � ����� ������������� � ��������� � � However, we have to de�ne rules between lastElt and Cons for the
ase thatthose abbreviations are unfolded, therefore we have to introdu
e auxiliary agentsin the end.7 Con
lusionWe have shown how to extend Intera
tion Nets to fa
ilitate nested pattern mat
hingwithout introdu
ing auxiliary rules. This provides a
onvenient and a more naturalway of expressing Intera
tion Net programs. We see this extension as a positivestep towards using Intera
tion Nets as a pra
ti
al programming language.Referen
es[1℄ Alexiev, V., \Non-deterministi
 intera
tion nets," Ph.D. thesis (1999), adviser-Jia You.[2℄ Be
het, D., Partial evaluation of intera
tion nets, in: M. Billaud, P. Cast�eran, M. M. Corsini,K. Musumbu and A. Rauzyand, editors, Pro
eedings of the Se
ond Workshop on Stati
 AnalysisWSA'92, Bigre Journal 81-82, 1992, pp. 331{338.[3℄ Fern�andez, M. and I. Ma
kie, From term rewriting to generalised intera
tion nets, in: H. Ku
hen andS. D. Swierstra, editors, Pro
eedings of the 8th International Symposium on Programming Languages,Implementations, Logi
s and Programs (PLILP'96), Le
ture Notes in Computer S
ien
e 1140 (1996),pp. 319{333.[4℄ Gonthier, G., M. Abadi and J.-J. L�evy, The geometry of optimal lambda redu
tion, in: Pro
eedings ofthe 19th ACM Symposium on Prin
iples of Programming Languages (POPL'92) (1992), pp. 15{26.[5℄ Lafont, Y., Intera
tion nets, in: Seventeenth Annual Symposium on Prin
iples of ProgrammingLanguages (1990), pp. 95{108.[6℄ Lamping, J., An algorithm for optimal lambda
al
ulus redu
tion, in: Pro
eedings of the 17th ACMSymposium on Prin
iples of Programming Languages (POPL'90) (1990), pp. 16{30.[7℄ Lippi, S., in2 : A graphi
al interpreter for intera
tion nets, in: S. Tison, editor, Rewriting Te
hniquesand Appli
ations (RTA'02), Le
ture Notes in Computer S
ien
e 2378 (2002), pp. 380{386.[8℄ Ma
kie, I., YALE: Yet another lambda evaluator based on intera
tion nets, in: Pro
eedings of the 3rdInternational Conferen
e on Fun
tional Programming (ICFP'98) (1998), pp. 117{128.[9℄ Pinto, J. S., Parallel evaluation of intera
tion nets with mpine., in: A. Middeldorp, editor, RTA, Le
tureNotes in Computer S
ien
e 2051 (2001), pp. 353{356.[10℄ Sinot, F.-R. and I. Ma
kie, Ma
ros for intera
tion nets: A
onservative extension of intera
tion nets.,Ele
tr. Notes Theor. Comput. S
i. 127 (2005), pp. 153{169.104

TERMGRAPH 2007

Sub-λ-calculi, classified

François-Régis Sinot1

Universidade do Porto (DCC & LIACC)
Rua do Campo Alegre 1021–1055

4169–007 Porto, Portugal

Abstract

When sharing is studied in the λ-calculus, some sub-calculi often pop up, for instance λI or the linear
λ-calculus. In this note, we propose a definition and a complete classification of a large class of such
sub-calculi.

Keywords: λ-calculus, sharing, linearity

1 Introduction

Sharing is an important but difficult issue, in particular in the λ-calculus. Some-
times, in order to simplify the problem or tackle it in a more focused way, attention
is restricted to a particular subsystem of the λ-calculus. Such subsystems include
λI, where erasing is forbidden, or the linear λ-calculus, where all terms are lin-
ear [1]. These subsystems are defined by imposing some restrictions on the number
of occurrences of bound variables. In this note, we propose to generalise this idea
and study in a systematic way such sub-calculi.

2 Sub-calculi

We assume basic knowledge of the λ-calculus, see [1] for more details.

Definition 2.1 We define the number of free occurrences of a variable x in a λ-term

1 Email: frs@dcc.fc.up.pt

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:frs@dcc.fc.up.pt

Sinot

t, written |t|x, as follows:

|x|x = 1
|y|x = 0
|t u|x = |t|x + |u|x
|λx.t|x = 0
|λy.t|x = |t|x

Remark that |t|x is well-defined on α-equivalence classes (i.e. if t =α u then
|t|x = |u|x for any variable x).

Our purpose is to study subsystems of the λ-calculus. One possible way to char-
acterise such subsystems in the most general fashion would be to have a predicate
P on λ-terms such that t belongs to the subsystem if and only if P(t) holds. This
representation is too general to be interesting: there is little hope to obtain a nice
characterisation theorem in such a general setting. We thus focus our attention on
the following, more restricted class of subsystems.

Definition 2.2 If P is a predicate on natural numbers, we define the set of λP -
terms as follows:

t, u ::= x | t u

| λx.t if P(|t|x)

In addition, we may or may not impose that P(|t|x) holds for every free variable
x of an open term t. If we do, we say that we are under the strict convention; if
we do not, we say that we are under the relaxed convention. We also define the
λP -calculus as the set of λP -terms equipped with β-reduction →β.

The strict convention entails some unpleasant syntactic accidents, as will be
shown later. These accidents would disappear if we added (unconstrained) con-
stants. However, the pure λ-calculus view of constants is exactly as free variables,
which should thus be unconstrained. Consequently, we always assume the relaxed
convention, unless otherwise stated.

With such a definition, it is natural to wonder how well P characterises λP . From
now on, operations on propositions are always implicitly lifted to predicates, which
means that, for instance, if P andQ are predicates, P∧Q is the predicate defined by,
for all n, (P∧Q)(n) = P(n)∧Q(n). Moreover, P, Q, implicitly denote predicates on
natural numbers. We also allow the definition of predicates by partial application
of infix binary predicates, in a Haskell-like style, e.g. (≥ 3) is the predicate defined
by, for all n, (≥ 3)(n) = (n ≥ 3).

Proposition 2.3 (λP ⊆ λQ) ⇐⇒ (P ⇒ Q).

Proof.

⇒ Assume n ≥ 1 and P(n). We can build the term t = λx. x . . . x︸ ︷︷ ︸
n

∈ λP ⊆ λQ.

Then t ∈ λQ, hence Q(n), by definition of λQ. For the case n = 0, we use

106

Sinot

instead t = λx.z where z is a free variable (remember that we assume the relaxed
convention).

⇐ Assume t ∈ λP and let λx.u be a subterm of t. By definition of λP , P(|u|x)
holds, and so does Q(|u|x). Since this holds for every sub-abstraction of t, we
may conclude t ∈ λQ.

2

Remark 2.4 The left-to-right implication is false under the strict convention with-
out constants, for instance λ⊥ = λ(=0) = ∅.

In particular, an immediate corollary of Proposition 2.3 is that λP = λQ if and
only if P ⇔ Q. In other words, P exactly characterises λP .

3 Stability

Definition 3.1 A set of λ-terms S is said to be stable if it is closed under β-
reduction, i.e. if whenever t ∈ S and t →β u, then u ∈ S. Moreover, we also say
that P is stable if λP is stable.

The notion of λP -calculus only makes sense when the set of λP -terms is stable.
Fortunately, we can characterise this in a slightly more operational way.

Lemma 3.2 P is stable if and only if

∀m ≥ 0, n ≥ 0, 0 ≤ k ≤ n.P(m) ∧ P(n) =⇒ P(n + k ·m− k).

Proof. First remark that, with the notations of the lemma, n + k · m − k ≥ 0,
because n − k ≥ 0 and k · m ≥ 0. Let’s consider an arbitrary β-reduction under
an arbitrary binder (if the reduction is not under a binder, this is irrelevant to the
kind of conditions we have):

λy.C[(λx.t) u]→β λy.C[t{x := u}].

Let us write m = |t|x, n = |C[(λx.t) u]|y and k = |u|y. We thus have |C[t]|y = n− k

and |C[t{x := u}]|y = n + k ·m − k. The reduct thus belongs to λP if and only if
P(n+k ·m−k) holds for all n and k (corresponding to every choice of outer binder
λy). Indeed, P is stable if and only if P(n + k ·m − k) holds whenever P(m) and
P(n) hold. 2

Theorem 3.3 P is stable (i.e. the λP-calculus is well-defined) if and only if

∀m ≥ 0, n ≥ 1.P(m) ∧ P(n) =⇒ P(m + n− 1).

Proof. Using Lemma 3.2 and the fact that the other implication is trivial, we
assume that ∀m ≥ 0, n ≥ 1.P(m) ∧ P(n) =⇒ P(m + n − 1) and we only have to
show that P(n + k ·m − k) holds if m ≥ 0, n ≥ 0, 0 ≤ k ≤ n, P(m) and P(n). If
n = 0, this is trivially true, because k = 0, thus n + k ·m− k = 0, and P(0) = P(n)
holds by hypothesis. We may thus assume n ≥ 1, and we prove the statement by
induction on k. If k = 0, it is true because n + k · m − k = n and P(n) holds

107

Sinot

by hypothesis. Let 0 ≤ k ≤ n − 1 and assume P(n + k · m − k) holds. Then,
P(n+(k +1) ·m− (k +1)) = P(m+(n+k ·m−k)−1) holds using the assumption,
the induction hypothesis, and the fact that n + k ·m − k ≥ 1 because k ≤ n − 1
and k · m ≥ 0. We indeed conclude that the statement holds for all k such that
0 ≤ k ≤ n. 2

4 Examples

Example 4.1 We use Theorem 3.3 to recover some well-known stability results.

• λ> (aka. the λ-calculus) is stable;
• λ(=1) (aka. the linear λ-calculus) is stable;
• λ(≥1) (aka. λI) is stable;
• λ(≤1) (aka. the affine λ-calculus) is stable.

Proof. We only show the proof for λ(≥1). Assume m ≥ 1 and n ≥ 1, then m + n−
1 ≥ 1 + 1− 1 = 1. Using Theorem 3.3, we conclude that (≥ 1) is stable. The proof
shows that 1 plays a special role in this framework. 2

Example 4.2 There are also some less usual sub-calculi, with a more questionable
computational content.

• λ⊥ (where there is no λ-abstraction) is stable (under the strict convention, this
calculus is empty);

• λ(=0) (where there is no occurrence of bound variables) is stable (under the strict
convention, this calculus is empty);

• λ(≥2) is stable;
• more generally, if b ≥ 1, λ(≥b) is stable;
• however, if b ≥ 2, λ(≤b) is not stable.

Proof. The first two sub-calculi are degenerated, which is evidenced by the fact
that the condition in Theorem 3.3 is true because the premises of the implication
can never be satisfied. Let b ≥ 1, we verify that λ(≥b) is stable. Let m ≥ b and
n ≥ b, then m + n− 1 ≥ 2 · b− 1 ≥ b, since b− 1 ≥ 0. Thus λ(≥b) is stable. 2

Using Theorem 3.3, we give some non-trivial sub-calculi (or non-sub-calculi) of
the λ-calculus (of course only those of the form λP for some P).

Example 4.3 Let odd(n) = (∃k ≥ 0.n = 1 + 2 · k), then odd is stable. The “odd
calculus” λodd is a simple, non-trivial stable sub-calculus.

Proof. Assume odd(m) and odd(n). Then, there exist k, k′ ≥ 0 such that m =
1+2 ·k and n = 1+2 ·k′. Then m+n−1 = (1+2 ·k)+(1+2 ·k′)−1 = 1+2 ·(k+k′)
with k + k′ ≥ 0, and indeed odd(m + n− 1) holds. 2

Remark 4.4 The “even calculus” λeven defined by even(n) = (∃k.n = 2 · k) is
not stable (we are therefore reluctant to call it a calculus). This can be seen as a
consequence of Theorem 3.3 or directly: λy.(λx.x x) y y →β λy.y y y.

108

Sinot

In fact, the previous example can be generalised to the following large class of
stable sub-calculi.

Example 4.5 Let q ≥ 1 and multq(n) = (∃k ≥ 0.n = 1+k ·q), then λmultq is stable.

Proof. Similarly, using (1 + k · q) + (1 + k′ · q)− 1 = 1 + (k + k′) · q. 2

We will see in Section 6 that essentially all stable λP -calculi can be decomposed
in calculi of this form.

5 Syntactic Properties

Theorem 5.1 If P is stable, the λP-calculus is confluent.

Proof. Assume u1
∗
β← t →∗

β u2 in the λP -calculus. Then there exists a λ-term v

such that u1 →∗
β v ∗

β← u2, by confluence of the λ-calculus, and v is a λP -term by
stability of P. 2

Theorem 5.2 If P is stable, the λP-calculus is strongly normalising if and only if
P(n) does not hold for any n ≥ 2.

Proof. If P(n) does not hold for any n ≥ 2, the λP -calculus is a subsystem of
λ(≤1), i.e. the affine λ-calculus, which is strongly normalising. Conversely, assume
that P(n) holds for some n ≥ 2. Then we can build the non-normalising λP -term
(λx. x . . . x︸ ︷︷ ︸

n

) (λx. x . . . x︸ ︷︷ ︸
n

). 2

6 Classification

With Theorem 3.3 in hand, we characterise further the sub-calculi of the λ-calculus
(of the form λP for some P).

Proposition 6.1 If P and Q are stable, then P ∧Q is stable.

Proof. Straightforward, even without Theorem 3.3. 2

Remark 6.2 If P and Q are stable, P ∨Q is not necessarily stable.

Proof. Let P(n) = (∃k ≥ 0.n = 1 + 2 · k) and Q(n) = (∃k ≥ 0.n = 1 + 3 · k).
According to Example 4.5, P and Q are stable. (P ∨Q)(3) holds since P(3) holds,
(P ∨ Q)(4) holds since Q(4) holds, but (P ∨ Q)(3 + 4 − 1) = (P ∨ Q)(6) does not
hold since neither P(6) or Q(6) holds. In other words, P ∨Q is not stable. 2

Proposition 6.3 If P is stable and P(2) holds then P(n) holds for all n ≥ 2.

Proof. By induction on n. P(2) holds by hypothesis. Assume P(n) holds, then
using Theorem 3.3, P(n + 2− 1) = P(n + 1) also holds. 2

Proposition 6.4 If P is stable and if P(0) and P(n) hold for some n ≥ 2, then
P(n) holds for all n ≥ 0. In other words, we get the full λ-calculus.

Proof. We show that P(k) holds for 0 ≤ k ≤ n by reverse induction on k. P(n)
holds by hypothesis. Let 1 ≤ k ≤ n and assume that P(k) holds. Then P(k − 1) =

109

Sinot

P(0 + k − 1) holds using Theorem 3.3, stability of P, the induction hypothesis,
and the facts that k ≥ 1 and P(0) holds. In particular, P(2) holds and we use
Proposition 6.3. 2

As evidenced in Remark 6.2, disjunction is not a well-behaved operation with
respect to stability. However, the following proposition exhibits the particular be-
haviour of 1, and tends to show that, to some extent, the choice of P(1) is not
relevant for the stability of P.

Proposition 6.5 (i) if P is stable, then P ∨ (= 1) is stable;

(ii) if P ∨ (= 1) is stable and either P(0) or P(2) does not hold, then P is stable.

Proof.

(i) Assume P is stable, (P ∨ (= 1))(m) and (P ∨ (= 1))(n). If m = 1, then
m + n − 1 = n and (P ∨ (= 1))(m + n − 1) holds; and similarly if n = 1.
Otherwise, both P(m) and P(n) hold, and (P ∨ (= 1))(m + n − 1) indeed
holds.

(ii) Assume P ∨ (= 1) is stable, P(m) and P(n) hold. Then (P ∨ (= 1))(m+n−1)
holds. Either P(m + n − 1) holds and we are done, or m + n − 1 = 1, hence
m = n = 1 and P(1) holds, because the case m = 0 and n = 2 is excluded.

2

Lemma 6.6 If P is stable and there exists n ≥ 2 such that P(n) holds, then there
exists q ≥ 1 such that P(1 + k · q) holds for every k ≥ 1.

Proof. With the notations of the lemma, let q = n− 1. We prove by induction on
k ≥ 1 that P(1 + k · q) holds. This is true for k = 1. Assume P(1 + k · q) holds,
n + (1 + k · q)− 1 = 1 + (k + 1) · q and P(1 + (k + 1) · q) holds, using Theorem 3.3.2

We now have everything in hand to exhibit a complete classification of the λP -
calculi.

Theorem 6.7 P is stable if and only of one of the following holds for all n:

(i) P(n)⇔ ⊥;

(ii) P(n)⇔ >;

(iii) P(n)⇔ (n = 0);

(iv) P(n)⇔ (n = 0 ∨ n = 1);

(v) there exist 0 ≤ p ≤ ω and 1 ≤ q1 < . . . < qp pairwise non divisible such that:
P(n)⇔ (∃k1, . . . , kp ≥ 0.n = 1 +

∑
1≤i≤p ki · qi);

(vi) there exist 1 ≤ p ≤ ω and 1 ≤ q1 < . . . < qp pairwise non divisible such that:
P(n)⇔ (∃k1, . . . , kp ≥ 0, 1 ≤ j ≤ p.kj ≥ 1 ∧ n = 1 +

∑
1≤i≤p ki · qi).

Moreover, this decomposition is unique.

Proof. If one of the cases (i–iv) holds, it has already been noted in Section 4 that
P is stable. If (v) or (vi) holds, this is a consequence of Theorem 3.3, similar to
Example 4.5. Conversely, suppose P is stable. We distinguish cases according to
whether or not P(0) holds.

110

Sinot

• If P(0) holds, does there exist n ≥ 2 such that P(n) holds ?
· If there is such a n, we are in case (ii), thanks to Proposition 6.4.
· If not, we are indeed in case (iii) or (iv).

• If P(0) does not hold, we look at P(1).
· If P(1) holds, we prove by induction on p ≥ 0 that there exist 1 ≤ q1 < . . . < qp

pairwise non divisible such that (∃k1, . . . , kp ≥ 0.n = 1+
∑

1≤i≤p ki ·qi)⇒ P(n).
This is true for p = 0. Assume this is true for some p, and consider the
smallest n not equal to (1 +

∑
1≤i≤p ki · qi) for some k1, . . . , kp ≥ 0 such that

P(n) holds. There are two cases. If there is no such n, that means that the
condition is verified and P is fully described. Otherwise, let qp+1 = n − 1.
Indeed, by construction, qp+1 > qp and none of q1, . . . , qp is a divisor of qp+1.
Thanks to Theorem 3.3 and in a similar way to Lemma 6.6, for all kp+1 ≥ 0,
P(1 + kp+1 · qp+1). Then, using again Theorem 3.3, the statement holds for
p + 1. If the process stops, the equivalence is clear. If it does not, let’s write
Pp(n) = (∃k1, . . . , kp ≥ 0.n = 1 +

∑
1≤i≤p ki · qi). For all p, Pp ⇒ Pp+1 ⇒ P

where the first implication is strict. The sequence (Pp)p is strictly increasing
and bounded, it thus has a limit Pω. There is no n such that P(n) but not
Pω(n), because this would contradict the construction. We conclude P ⇔ Pω.
· If P(1) does not hold, let’s consider the smallest n ≥ 2 such that P(n) holds.

If there is no such n, we are in case (i). Otherwise, we can proceed as in the
previous case, starting at p = 1, with q1 = n− 1, and obtain case (vi).

Unicity is clear: the different cases do not overlap, and in cases (v) or (vi), the
non-pairwise divisibility of q1, . . . , qp ensures that there is no redundancy. 2

Remark 6.8 Theorem 6.7 gives a complete classification of the stable λP -calculi
in terms of equality, but this is not necessarily the “best” description. For instance,
we have seen that (≥ 3) is stable, but its description using Theorem 6.7 is case
(vi) with p = ω and qi is the i-th prime number. In particular, it is not a finite
description.

7 Conclusion

We have defined and given a complete characterisation of a class of subsystems of the
λ-calculus taking into consideration the number of occurrences of variables, which
is a crucial issue for sharing. We recover well-known calculi such as λI or the linear
λ-calculus, but we also discover unconventional calculi whose interest as a compu-
tational model remain to study. Moreover, our characterisation is very algebraic
and may lead to a better understanding of the λ-calculus and its subsystems.

Acknowledgement

This article has benefited from comments by several anonymous referees.

References

[1] Barendregt, H. P., “The Lambda Calculus: Its Syntax and Semantics,” Studies in Logic and the
Foundations of Mathematics 103, North-Holland Publishing Company, 1984, second, revised edition.

111

TERMGRAPH 2007

Modeling and Verifying GraphTransformations in Proof AssistantsMartin Stre
ker1IRITUniversit�e Paul Sabatier118 route de NarbonneF-31062 ToulouseAbstra
tThis paper takes �rst steps towards a formalization of graph transformations in a general setting of inter-a
tive theorem provers, whi
h will form the basis for proofs of
orre
tness of graph transformation systems.Whereas graph rewriting is usually performed by mapping a pattern graph into a sour
e graph by means ofa graph morphism and then
arrying out operations on the image node and edge set, this arti
le generalisesthe notion of pattern graph to path expressions, whi
h are formulae in a fragment of �rst-order logi
. Weexamine the
orresponden
e with traditional graph rewriting and show that this interpretation is bene�
ialwhen formally reasoning about model transformations with the aid of proof assistants.Keywords: Graph Transformations, Theorem Proving1 Introdu
tionGraph rewriting examines whi
h stru
tural
hanges are engendered when applyingrewrite rules to a graph. There is no unique approa
h to graph rewriting - one may
ite algebrai
 [Bar03℄ and
ategori
al [CMR+96,EHK+97℄ formalisms.The dis
ipline has a

umulated an impressive amount of results on propertiesof rewrite systems (su
h as
on
uen
e and termination) resulting from spe
i�
 ruleformats [Plu99℄. Re
ently, there is a growing pra
ti
al interest in graph rewritingin the
ontext of model driven engineering, where a software or hardware artifa
t isrepresented graphi
ally and
an be re�ned or refa
tored by the appli
ation of graphrewriting rules. Several graph rewriting tools are available. They emanate fromfoundational work and are usually equipped with some analyses of rule properties[Tae03,KS06,Agr04℄, or take a more pragmati
 view (ATL [BBDV03℄ and Kermeta[MFV+05℄).In spite of a large body of work on graph transformations, the question of veri-�
ation of transformations \in general" is far from settled. The foundational work1 Email: stre
ker�irit.fr This paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

mailto:strecker@irit.fr

Stre
kerof [Cou90℄ aims at a logi
al
hara
terization of graph transformations, where e�e
-tive veri�
ation of stru
tural properties is not a primary
on
ern. Usually, however,graph transformation systems are per
eived as extensions of term rewriting systems,so mu
h of the e�ort has gone into investigating spe
i�
 properties su
h as
on
u-en
e and termination [Plu99℄, whi
h does not ne
essarily allow to determine whethera graph has a
ertain shape after transformation. These questions may be answeredfor graph repla
ement systems having a restri
ted stru
ture [FM97℄, for proper-ties expressed in spe
ialized logi
s su
h as monadi
 se
ond order logi
 [KS93℄ ortype systems [BCE+05℄. There are automated approa
hes based on model
he
king[Var04℄, whi
h however
an only handle graphs with an a priori bounded number ofelements. [RD06℄ presents te
hniques for dealing with spe
i�
 stru
tural propertiessu
h as multipli
ities.However, in some
ir
umstan
es, it is useful to resort to a more general setting,in order to express stronger properties or to over
ome limitations of a restri
ted ruleformat. This gives us the same kind of advantage a program logi
 may have overa stati
 analysis for determining the
orre
tness of an imperative program { and itsu�ers from the same drawba
ks, notably a sometimes heavy user intervention to
arry out intera
tive proofs.The veri�
ation of stru
tural properties will be the main fo
us of this paper.The work reported here has grown out of an e�ort to formalise model transforma-tions in intera
tive proof assistants. A �rst attempt [SG06℄, aiming at formalisingtraditional graph rewriting as sket
hed above, required
omplex reasoning aboutgraph morphisms. It has turned out that repla
ing the pattern graph by formu-lae over graph stru
ture (whi
h we will
all path formulae in the following) yieldsmu
h more manageable proof obligations. At the same time, path formulae aremore expressive than pattern graphs and have therefore an interest in their own,independently from
on
erns about formal veri�
ation.Path formulae
an be understood as formulae over a fragment of �rst order logi
(possibly in
luding transitive
losure), whi
h are interpreted over graphs. Deter-mining whether a graph satis�es a path formula is de
idable, whi
h is indispensablefor e�e
tively applying a transformation rule to a given graph. On the downside,validity of path formulae may not be de
idable, so that intera
tive proofs be
omene
essary.The paper is stru
tured as follows: In Se
tion 2, we informally introdu
e gen-eralised graph transformations. The formal model is presented in Se
tion 3. InSe
tion 4, we show how we
an re
over the traditional model of graph rewriting.We take a glimpse at how to reason about graph transformations in a proof assistantin Se
tion 5 before
on
luding with an outlook on future work.2 Example TransformationsTo set the stage, we des
ribe two toy transformations: a transformation dupli
atinga graph, and another one implementing a simple garbage
olle
tor.The purpose of the graph dupli
ation transformation is to generate a new graph
onsisting of two exa
t
opies of the original graph. We assume that the originalgraph has nodes of type Node, with edges of type E between them. For the purposes113

Stre
kerof transformation, we need nodes of type Orig, supposed to mark the nodes of theoriginal graph during transformation, and edge types Or (between Orig and Node)and Cp (between a node and its original).Dupli
ation pro
eeds in several steps: First, we mark all nodes of the originalgraph with Orig nodes. We then
reate a dupli
ate node for ea
h original, memoris-ing the relation between the original and the
lone with a Cp edge. We
an similarlyreprodu
e the edges of the original graph in the
opy. All that remains to be donenow is to erase the auxiliary marking.
�!

Fig. 1. Dupli
ating a graphAn example graph and the result of its transformation, just before deletion ofthe Cp edges and the markers, is shown in Figure 1. This is a s
reen shot of graphsprodu
ed by the AGG tool [Tae03℄, based on a
ategori
al approa
h, whi
h allows to
onveniently model this kind of transformation (a more detailed
omparison followsin Se
tion 4).How do we formalise the marking phase, i.e. the �rst step of our transformation?In our setting, a transformation rule is
omposed of two elements: an appli
ation
ondition and an a
tion part. The appli
ation
ondition, a path formula F express-ing if and where a rule
an be applied, says that the rule
an operate on any noden of type Node whi
h is not already marked by some node m of type Orig:F (n) � Node(n) ^ :9m: (Orig(m) ^m Or�! n)Here, m Or�! n represents an Or edge between m and n.The a
tion part (not shown here) expresses what we do if F is satis�ed for anode n: We generate a new node, say m0, having type Orig, and we
reate anOr-edge (m0; n). We will
ome ba
k to this example in Se
tion 3.3.Of
ourse, a single transformation step of this kind will not suÆ
e to mark allnodes of a graph. Rather, we have to iterate the rule until no further appli
ation ispossible, i.e. until F is false for all nodes of the graph. We will brie
y look at thisquestion in Se
tion 5.The garbage
olle
tor is an example of a transformation that is not dire
tlyexpressible in traditional graph rewriting approa
hes. We assume to have a numberof Root obje
ts and a number of Node obje
ts. Root obje
ts are linked to Nodesthrough rn edges, Nodes are linked among themselves through nn edges. Any Nodenot a

essible from a Root is
onsidered as garbage.The predi
ate G(n) saying that node n is garbage
an be written as the pathformula G(n) � :9r n0: r rn�! n0 ^ n0 nn�!� n114

Stre
kerwhere rn�! is an rn edge (and similarly for nn), and the \star" is transitive
losure.G(n) is the appli
ation
ondition of a rule
olle
t, whose a
tion part just saysthat n should be deleted (in doing so, all adja
ent edges disappear as well).In the
ase ofG(n), we have
hosen not to make the typing information expli
it inthe rule itself. In fa
t, it
an be dedu
ed from general typing predi
ates, expressibleas path formulae, that
ould form the \ba
kground theory" of the appli
ation. Forexample, the typing of the rn edge is stated as8r n: (r rn�! n) �! Root(r) ^Node(n)3 Formal ModelIn this se
tion, we formally present the basi
 notions of our graph rewriting ap-proa
h, notably graphs, graph transformations and morphisms and some well-formedness
onditions we have to impose to ensure
onsisten
y of the model. Sin
eour development has been
arried out in the Isabelle proof assistant [NPW02℄, wewill use Isabelle's syntax, whi
h we will explain wherever needed.3.1 GraphsOur purpose is not to formalize any parti
ular approa
h to graph rewriting, su
h asthe one based on
ategory theory. Our model is set-theoreti
. Roughly, graphs are
omposed of a �nite set of nodes, a �nite set of edges and a typing of the nodes.In order to
reate new nodes during graph rewriting, we have to have an in�nitesupply of fresh nodes. We have therefore
hosen to take the natural numbers asthe base type of our nodes. The edges are sets of pairs of nodes, indexed by anedge type 0et, su
h as Cp and E in the introdu
tory example. This pre
ludes to havemore than one edge of a given edge type between two nodes. However, under thisde�nition, one
an more easily use standard relational operators like
ompositionand transitive
losure, whi
h
omes handy when de�ning the semanti
s of pathexpressions further below. A node typing assigns a node type 0nt (su
h as Root andNode) to ea
h node of the graph. Altogether, this gives the following de�nition ofthe type of graphs:re
ord (0nt; 0et) graph =nodes :: nat setedges :: 0et) (nat � nat) setnodetp :: nat) 0nt option(An option type T option has a distinguished value None, representing unde-�nedness, and de�ned values Some t for t and element of T.)In a minimalisti
 model, node typing is inessential, but it is useful for des
ribingsome stru
tural aspe
ts of graphs. However, we have ex
luded more
omplex nodeattributes that would be required for formalising the semanti
s of an artifa
t. They
ould be easily added by providing a mapping in the spirit of nodetp from the nodeset to an attribute domain.Finiteness of the node set is expressed by a stru
tural well-formedness predi
ate,just as the
ontainment of the endpoints of edges in the node set and well-de�nednessof node typing: 115

Stre
kerstru
t-wf-gr :: (0nt; 0et) graph) boolstru
t-wf-gr gr ==(�nite (nodes gr)) ^(8 et: (Field (edges gr et)) � (nodes gr)) ^dom (nodetp gr) = (nodes gr)Here, dom is the domain of a mapping, Field the union of the domain andrange of a relation. A

ess to a
omponent of a re
ord, su
h as nodes, is written infun
tional notation.3.2 Path expressionsThe appli
ation of graph transformations to a graph is subje
t to an appli
ability
ondition. Traditionally, this appli
ability
ondition is given in the form of a patterngraph whi
h is mapped, via a graph morphism, into a sour
e graph to whi
h thetransformation will be applied.In a �rst attempt [SG06℄, we have faithfully
oded this approa
h, but it hasturned out that the formulae resulting from this graph mapping require
onsiderablemassaging for being usable any further. We try to
ir
umvent this problem byrepla
ing the pattern graph by a predi
ate on (sour
e) graphs, whi
h at the sametime opens up the possibility of expressing more general properties (we
ome ba
kto this in Se
tion 4).However, we have to take
are not to use too
omplex predi
ates: The least we
an expe
t from a graph rewriting engine is to be able to de
ide whether a predi
ateis satis�ed for a parti
ular graph and thus, whether a rule is appli
able to this graph.Di�erently said, the model
he
king problem for the
lass of predi
ates should bede
idable, even though entailment need not be, see Se
tion 5.In the following, we present a logi
 of path formulae, whi
h we have founduseful for expressing interesting properties (see the dis
ussion in Se
tion 4). How-ever, there is no intrinsi
 reason to adopt pre
isely the language
onstru
tors wehave sele
ted, and the de
idability of the logi
, as well as the
omplexity of model
he
king, is greatly in
uen
ed by this
hoi
e. Similar notions
an be found in[YRS+06,KS93,Ren03℄To have a �ne
ontrol over the logi
 of predi
ates on graphs, we deeply embedit into Isabelle's higher order logi
. We start by de�ning node set expressions(representing sets of nodes) and path expressions (representing endpoints of paths):datatype 0nt nodeset= All-set | set of all nodes of graphj Type-set 0nt | set of all nodes of given typej Singleton-set nat | singleton
ontaining
onstantdatatype (0nt; 0et) path= Empty-pth | empty pathj Edge-pth 0et | edge with given edge typej InvEdge-pth 0et | inverse edgej Seq-pth (0nt; 0et) path (0nt; 0et) path | sequential
ompositionj Alt-pth (0nt; 0et) path (0nt; 0et) path | alternativej Clos-pth (0nt; 0et) path | transitive
losureBased on this, we de�ne path formulae, whi
h are
onstru
ted from two base
ases (set and path formulae, for node set and path expressions, respe
tively), andthe usual Boolean
onne
tives and quanti�ers:datatype (0nt; 0et) path-form= S-form 0nt nodeset nat | set formula 116

Stre
kerj P-form (0nt; 0et) path nat nat | path formulaj Neg-form (0nt; 0et) path-form | negationj Conj-form (0nt; 0et) path-form (0nt; 0et) path-form |
onjun
tionj All-form (0nt; 0et) path-form | universal quanti�
ationWith the above, other
onne
tives and the existential quanti�er Ex-form
an bede�ned as abbreviation. Universal quanti�
ation does not use a named, but rathera positional representation of variables (de Bruijn indi
es, [dB72℄). Thus, variablesare not identi�ers, but just numbers.In our informal notation of Se
tion 2, we have written S-form (Type-set T) nsimply as T (n) and P-form (Edge-pth e) n n 0 as n e�! n0. For instan
e, theappli
ation
ondition :9r n0: r rn�! n0 ^ n0 nn�!� n of the garbage
olle
torexample of Se
tion 2 be
omes:Neg-form (Ex-form (Ex-form(Conj-form(P-form (Edge-pth rn) 1 0)(P-form (Clos-pth (Edge-pth nn)) 0 2))))The semanti
s of expressions respe
tively formulae is de�ned by means of fun
-tions nodeset-interp, path-interp respe
tively path-form-interp that interpret theexpressions respe
tively formulae under a variable interpretation I : nat) nat ina graph gr.
onstsnodeset-interp :: [nat) nat; (0nt; 0et) graph; 0nt nodeset℄) nat setprimre
nodeset-interp I gr All-set = nodes grnodeset-interp I gr (Type-set t) = fn: nodetp gr n = Some tgnodeset-interp I gr (Singleton-set n) = fI ng
onstspath-interp :: [nat) nat; (0nt; 0et) graph; (0nt; 0et) path℄) (nat � nat) setprimre
path-interp I gr Empty-pth = diag UNIVpath-interp I gr (Edge-pth e) = edges gr epath-interp I gr (InvEdge-pth e) = (edges gr e)^�1path-interp I gr (Seq-pth p p 0) = (path-interp I gr p) O (path-interp I gr p 0)path-interp I gr (Alt-pth p p 0) = (path-interp I gr p) [(path-interp I gr p 0)path-interp I gr (Clos-pth p) = (path-interp I gr p)^�
onstspath-form-interp :: [nat) nat; (0nt; 0et) graph; (0nt; 0et) path-form℄) boolprimre
path-form-interp I gr (P-form p n n 0) = ((I n; I n 0) 2 path-interp I gr p)path-form-interp I gr (S-form s n) = (I n 2 nodeset-interp I gr s)path-form-interp I gr (Neg-form pf) = (: (path-form-interp I gr pf))path-form-interp I gr (Conj-form pf pf 0) =((path-form-interp I gr pf) ^ (path-form-interp I gr pf 0))path-form-interp I gr (All-form pf) =(8 x : x 2 nodes gr �!path-form-interp ((I o (� x : x � 1))(0 :=x)) gr pf)In the above, UNIV is the set of all elements (of the given type), diag thediagonal of a set (the relation (e; e)), the
onverse of a relation R is written R^�1,and O is relation
omposition and Æ fun
tion
omposition.Model
he
king of node set and path expressions, i.e.
he
king that a graphgr satis�es a node set or path expression, reposes on well-known graph algorithms.Universal quanti�
ation is relativised to the node set of the graph, whi
h is �niteby well-formedness of graphs. Therefore,
he
king a universal formula only has toexamine a �nite number of elements. 117

Stre
ker3.3 Graph TransformationsRoughly speaking, a graph transformation rule should spe
ify under whi
h
onditionthe transformation is appli
able, and what to do when applying the transformationat a position in a sour
e graph to obtain a target graph.The appli
ability
ondition is just given by a path formula, as outlined in theprevious se
tion. Note that this path formula may
ontain free variables, for examplen in G(n) of Se
tion 2, whi
h
an be understood as referen
es to nodes in the sour
egraph. Of
ourse, in its
oding as path formula, the free variables are numbers.It is these numbers that we refer to when spe
ifying the a
tion: we say whi
hnodes are to be deleted respe
tively freshly generated (ndel resp. ngen) and whi
hedges are deleted resp. generated (edel resp. egen). Furthermore, we have to knowhow to type the newly generated nodes. Altogether, graph transformations havethe form:re
ord (0nt; 0et) graphtrans =| appli
ability
onditionapp
ond :: (0nt; 0et) path-form| mapping of nodesndel :: nat set | deleted nodesngen :: nat set | generated nodes| mapping of edgesedel :: 0et) (nat � nat) set | deleted edges, indexed by typeegen :: 0et) (nat � nat) set | generated edges, indexed by type| typing of generated nodesngentp :: nat) 0nt optionFor example, the marking rule of Se
tion 2
an now be expressed by the trans-formation:mark :: (nodetp; edgetp) graphtransmark ==(j app
ond = mark-F 0 ;ndel = fg;ngen = f1g;edel = � et: fg;egen = (� et: fg)(Or :=f(1 ;0)g);ngentp = [1 7! Orig℄j) Here, mark-F is the
oding of the appli
ation
ondition. The appli
ation positionof the rule is node 0. No nodes and edges are deleted, a node numbered 1 is generatedand an Or edge is added between node 1 and 0. (The syntax for update of fun
tionf at x with value y is f (x :=y).)For graph transformations to make sense, the referen
es to nodes to be deletedhave to be among the referen
es to nodes in the appli
ability
ondition (thus, to thefree variables of the appli
ability
ondition), whereas referen
es to generated nodesshould not o

ur in the appli
ability
ondition. We only generate a �nite numberof nodes in ea
h transformation step, and to all of these nodes we assign a type.Similar
onstraints hold for deleted and generated edges. To summarise, stru
turalwell-formedness of a graph transformation is expressed by the following predi
ate:stru
t-wf-gt :: (0nt; 0et) graphtrans) boolstru
t-wf-gt gt ==(ndel gt) � (fv-path-form (app
ond gt)) ^�nite (ngen gt) ^ (fv-path-form (app
ond gt)) \ (ngen gt) = fg ^dom (ngentp gt) = (ngen gt) ^(8 et: Field (edel gt et) � (fv-path-form (app
ond gt))) ^(8 et: Field (egen gt et) � ((fv-path-form (app
ond gt)) � (ndel gt)) [(ngen gt))118

Stre
ker3.4 Applying Graph TransformationsWe now
ome to the appli
ation of a graph transformation to a sour
e graph at aparti
ular position. In graph rewriting, mat
hing a pattern graph to a sour
e graph(and thus determining the appli
ation position) is traditionally a
hieved with theaid of a graph morphism. We adopt the same terminology and de�netypes graphmorph = (nat) nat option)with the understanding that the node referen
es o

urring in a graph transfor-mation rule are mapped to the nodes in a sour
e graph. For the \garbage
olle
tion"example, su
h a situation is depi
ted in Figure 2.
R

N

N R

N

N

N
N

G(n)

N
nn

nn

nn

rn

rn

rn

nn
rnFig. 2. Appli
ation of a graph morphism in a graphWe now have to spell out in detail how the target graph is
omposed, providedwe apply a graph transformation gt to a graph gr using a morphism gm. Quitesimply, the nodes to be deleted are just the ones in the image of the morphismunder the ndel-set.It is more diÆ
ult to express whi
h nodes are generated. The
hoi
e
ould be,non-deterministi
ally, any node set having the same
ardinality as the ngen-set andhaving no nodes in
ommon with the nodes of the sour
e graph. We have adopteda deterministi
 solution: The nodes freshly allo
ated are numbered m+ 1 throughm+k, where m is the maximal number present in the node set of graph gr and k isthe
ardinality of the ngen-set. All this is hidden in the de�nition of gt-gen-nodes.However, we only exploit the property that the fresh nodes do not o

ur in theoriginal graph, and that there is a bije
tion b between the ngen-nodes and the freshnodes.The latter property is needed for determining the type of the generated nodes.How do we
ompute it, for a fresh node n? We map n ba
k into the graph transfor-mation gt, where we
an look up its type. Thus, roughly, the type of n is (ngentpgt)(b�1(n)).The morphism on nodes indu
es a morphism on edges. From the edel- and egen-sets, we
an thus determine the edges in the sour
e graph whi
h are
andidates fordeletion and for insertion. We want to avoid dangling edges that result when nodesare requested to be deleted, but not their adja
ent edges. Therefore, the edges thatsurvive are those whose nodes are among the nodes of the target graph. A similarrestri
tion applies to the typing of the target nodes.With these explanations, the exa
t de�nition should be understandable:apply-graphtrans ::[(0nt; 0et) graphtrans; graphmorph; (0nt; 0et) graph℄) (0nt; 0et) graphapply-graphtrans gt gm gr ==let del-nodes = ran (gm j` (ndel gt)) in 119

Stre
kerlet gen-nodes = gt-gen-nodes gr gt inlet morph-gen = separ-map (ngen gt) (nodes gr) inlet morph-
 = gm ++ morph-gen inlet nds = ((nodes gr) � del-nodes) [gen-nodes inlet del-edges = (� et: (indu
ed-emorph gm) ` (edel gt et)) inlet gen-edges = (� et: (indu
ed-emorph morph-
) ` (egen gt et)) inlet tp-ngen = ((ngentp gt) Æm (inv-m morph-gen)) in(j nodes = nds;edges = � et: (restri
t-rel ((edges gr et � del-edges et) [gen-edges et) nds);nodetp = (restri
t-map ((nodetp gr) ++ tp-ngen) nds)j)In the above, f ` S is the image of set S under fun
tion f, and m j` S restri
tsmap m to S. In m1 ++ m2, map m2 overrides m1, and Æm is the
omposition ofmaps.3.5 Appli
ability of Graph TransformationsWhat we have
alled \graph morphisms" in Se
tion 3.4 is essential for determiningwhether a transformation is appli
able, and if yes, where to apply it. It shouldbe emphasised again that \graph morphism" is a slight misnomer, be
ause we donot map graphs into graphs, as in traditional graph rewriting. Rather, we want toverify that the appli
ability
ondition of a transformation rule is true.The following predi
ate states that a graph morphism gm satis�es a path formulapfs in a graph grt :appli
able-gm :: [graphmorph; (0nt; 0et) path-form; (0nt; 0et) graph℄) boolappli
able-gm gm pfs grt ==(dom gm = fv-path-form pfs) ^ (ran gm � nodes grt) ^path-form-interp (the o gm) grt pfsThe domain of the graph morphism has to be the set of free variables of thepath formula, and its range has to be a subset of the nodes of the graph. Mostimportantly, the path formula has to be satis�ed in the graph when interpreting itsfree variables by the graph morphism in the given graph. (the is the left inverse ofSome, thus the (Some x) = x).In most of our reasoning, we want to abstra
t away from parti
ular graph mor-phisms and just say that a transformation is appli
able in a graph:appli
able-transfo :: [(0nt; 0et) graphtrans; (0nt; 0et) graph℄) boolappli
able-transfo gt gr == 9 gm: appli
able-gm gm (app
ond gt) grNow, applying a graph transformation to a graph amounts to sele
ting an arbi-trary graph morphism and applying it to the graph:apply-transfo :: [(0nt; 0et) graphtrans; (0nt; 0et) graph℄) (0nt; 0et) graphapply-transfo gt gr ==apply-graphtrans gt (SOME gm: (appli
able-gm gm (app
ond gt) gr)) grHere, SOME is Hilbert's
hoi
e operator whi
h
ould be repla
ed by a
onstru
-tive
hoi
e based, for example, on a node ordering.3.6 Properties of Graph TransformationsWe
an now state a major result: appli
ation of well-formed graph transformationsto well-formed graphs yields again well-formed graphs:stru
t-wf-gr gr ^ stru
t-wf-gt gt �! stru
t-wf-gr (apply-graphtrans gt gm gr)This
an be
onstrued as a generi
 invariant of graph transformations that neednot be reproved for ea
h transformation rule when reasoning about graph transfor-120

Stre
kermation programs (see Se
tion 5). Note that the stru
tural well-formedness of theresulting graph depends on the well-formedness of the graph transformation gt, butis valid for arbitrary graph morphisms gm.In [SG06℄, we have shown that for traditional graph rewriting, we
an similarlyensure preservation of well-typing. In our
urrent setting, we
an express moregeneral typing properties than those examined in [SG06℄, for example
ardinal-ity
onstraints, so that \typing" in full generality be
omes unde
idable. We are
urrently exploring fragments of our path logi
 that permit suÆ
iently interestingtyping properties to expressed and preservation of typing to be proved.
4 Corresponden
e with Graph RewritingIn the following, we will argue that transformations expressible in traditional graphrewriting approa
hes
an be
oded in our system. It is therefore possible to \
om-pile" traditional graph rewriting rules to expressions involving our path formulae.It is then possible to use the te
hniques des
ribed in Se
tion 5 as a veri�
ationba
kend.In the rules of the AGG system [Tae03℄, for example, there are positive andnegative appli
ability
onditions, and ea
h su
h
ondition is a graph that has too

ur, respe
tively must not o

ur, in the graph where the rule is applied. As seenin Se
tion 2, we
an
ode positively o

urring graphs by a
onjun
tion of node setand path
onstraints, more pre
isely� a node set
onstraint T (n) for every node n of type T in the graph� a path
onstraint n e�! n0 for ea
h edge e in the graph.As mentioned before, we do not allow multiple edges of the same edge type betweena pair of nodes. We do not see that as a major drawba
k { if ne
essary, edges
anbe \rei�ed" by introdu
ing a node representing the edge.For negative appli
ability
onditions, we pro
eed in an analogous manner, withthe di�eren
e that the nodes of the graph are asserted not to exist. Thus, foran edge e o

urring in a negative appli
ability graph, we have a path formula:9n n0:n e�! n0.TheGReAT language [AKK+05℄ in
ludes, among others,
ardinality
onstraints.It is thus possible to spe
ify that a node n must (or must not) have k outgoinge-edges. Cardinality
onstraints are not present as primitive
onstru
ts in our lan-guage, but they
an be
oded by a s
hema likeCk(n) � 9x1 : : : xk: n e�! x1 ^ : : : n e�! xk ^ distin
t(x1; : : : xk)where distin
t(x1; : : : xk) is the
onjun
tion :(xi = xj), for i; j 2 f1; : : : ; kg; i 6= j.The fa
t that the graph morphisms between a pattern and a sour
e graph isinje
tive is usually an external notion in traditional graph rewriting. In a similarspirit as the above formula, we
an internalise this notion and express that thenodes a rule is applied to are distin
t. 121

Stre
ker5 Reasoning about Graph TransformationsAs mentioned in Se
tion 2, it is not suÆ
ient to apply a transformation rule on
e.Rather, one has to apply a rule repeatedly, or several rules have to be appliedin a spe
i�
 order. Most graph rewriting tools permit to iterate rule appli
ation,often by dividing the tool set into \layers". The need for exerting �ner
ontrol ongraph transformations has been re
ognised, among others, by the developers of theGReAT language, who develop a graphi
al language in
luding
onditional and loop
onstru
ts [AKK+05℄.We are
urrently developing a simple language for writing graph transformationprograms and reasoning about them. The language is not suÆ
iently polishedto present details, so we just give a sket
h and des
ribe how we might treat the\marking" example of Se
tion 2.The language is
omposed of statements stmt, among whi
h we only mentionDo and Loop. An operational semanti
s des
ribes how a state is modi�ed by these
onstru
ts. We distinguish between su

ess and failure states. In our
ase, a \state"is just a graph with a \su

ess" or \failure" tag. The meaning of the mentioned
onstru
ts is then:� Do b f
he
ks whether
ondition b is satis�ed in the
urrent state s. If this isthe
ase, fun
tion f is applied to s to produ
e a su

ess state s0. Otherwise, s isreturned as a failure state.� Loop
 applies statement
 inde�nitely often, until winding up in a failure state,whi
h is the result of the loop.Let us introdu
e the following abbreviation:App :: (0nt; 0et) graphtrans) (0nt; 0et) graph stmtApp gt == Do (� s: appli
able-transfo gt (out
ome-val s))(� s: apply-transfo gt (out
ome-val s))Here, out
ome-val dis
ards the su

ess / failure tag of a state. Consequently,App applies a graph transformation, if possible, and returns the
urrent state asfailure state otherwise.The marking phase of the introdu
tory example
an now be written as theprogram Loop (App mark), where we use the de�nition mark of Se
tion 3.3. Theentire graph dupli
ation transformation
onsists of a sequen
e of su
h loops, ea
hwith a di�erent rule.The language
omes equipped with a Hoare-style program logi
. We write W `fPg
 fQg to express that statement
 establishes the post
ondition Q providedthe pre
ondition P and some invariant well-formedness
onditions W hold. Wis typi
ally the predi
ate stru
t-wf-gr that we have shown to be invariant underappli
ation of graph transformations in Se
tion 3.6. Furthermore, the statement
usually
ontains annotations
orresponding to loop invariants.Suppose we want to show, for our example program, that all nodes of type Nodeare
orre
tly marked, i.e. have exa
tly one in
oming Or edge, provided that in theoutset, these nodes had zero or one in
oming Or edges. Let us �rst de�ne nset asthe set of nodes in a graph having a given node type:nset :: [(0nt; 0et) graph; 0nt℄) nat setnset gr nt == fn 2 nodes gr : (nodetp gr n) = Some ntg122

Stre
kerWe
an now state the pre
ondition:8 x2nset gr Node:
ard ((edges gr Or)�1 `` fxg) � 1(here, R `` S is the image of a set S under a relation R, and
ard the
ardinalityof a set). The post
ondition is similar, with the inequality repla
ed by an equality.The veri�
ation
ondition generator leaves us essentially with two goals: showingthat the loop invariant is preserved if the rule mark is appli
able, and showing thatthe post
ondition is satis�ed if the rule is not appli
able. We just look at the latter
ase.So assume that : appli
able-transfo mark gr. A

ording to the de�nition ofappli
able-transfo, this is equivalent to 8 gm: : appli
able-gm gm (app
ond mark)gr, whi
h
ontains an annoying se
ond-order quanti�er over a graph morphism gm.However, when looking at the de�nition of appli
able-gm, we realise that thedomain of gm is �nite - it is just the set of free variables of the appli
ation
onditionof mark. We now apply repeatedly the following lemma:lemma dom-redu
e-insert:(dom gm 0 = insert a A) =(9 b gm 00: gm 0 = gm 00(a 7!b) ^ gm 0 a = Some b ^ dom gm 00 = A)whi
h gradually redu
es the domain of the morphism gm 0 and instead introdu
esa �rst-order quanti�er b, so that we are eventually left with the hypothesis8n: n 2 nodes gr �! nodetp gr n = Some Node�! (9 x : nodetp gr x = Some Orig ^ (x ; n) 2 edges gr Or)whi
h naturally des
ribes the non-appli
ability of the rule and eventually permitsto prove the required
ardinality property.6 Con
lusionsIn this paper, we have presented �rst steps towards the veri�
ation, in an intera
tiveproof assistant, of stru
tural properties established by graph rewriting systems. Atthe same time, the path formulae we have introdu
ed give an alternative view onappli
ability
onditions for graph rewriting rules, that may pro�tably be used ingraph rewriting systems.Our path formulae are very expressive, whi
h has the downside of leading, ingeneral, to unde
idable veri�
ation problems. As we want to redu
e the amount ofhuman proof e�ort as mu
h as possible, we intend to address this topi
 in futurework, by developing spe
ialized analyses for fragments of our logi
. In fa
t, our pathformulae resemble path expressions used in shape analysis for pointer programs[YRS+06,KS93℄, other subsets have been identi�ed in the
ontext of des
riptionlogi
s [GM05℄. A detailed
omparison of these approa
hes still has to be done.A
knowledgementThis work has been strongly in
uen
ed by suggestions from Jean-Paul Bodeveixand Mamoun Filali and dis
ussions with Louis F�eraud, Ralph Matthes, Mar
 Pan-tel, Maxime Rebout and Sergei Soloviev. Mathieu Giorgino has elaborated severalexample transformations. 123

Stre
kerReferen
es[Agr04℄ Aditya Agrawal. A Formal Graph-Transformation Based Language for Model-to-ModelTransformations. PhD thesis, Vanderbilt University, August 2004.[AKK+05℄ A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and A. Vizhanyo. The design of a languagefor model transformations. Journal of Software and System Modeling, 2005.[Bar03℄ Erik Barendsen. Term Rewriting Systems,
hapter Term Graph Rewriting. CambridgeUniversity Press, 2003.[BBDV03℄ Jean B�ezivin, Erwan Breton, Gr�egoire Dup�e, and Patri
k Valduriez. The ATL Transformation-based Model Management Framwork. Te
hni
al report, IRIN, September 2003.[BCE+05℄ Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara K�onig, and VitaliKozioura. Verifying red-bla
k trees. In Pro
. of COSMICAH '05, 2005. Pro
eedings availableas report RR-05-04 (Queen Mary, University of London).[CMR+96℄ A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. He
kel, and M. Loewe. Algebrai
 approa
hesto graph transformation, part I: Basi

on
epts and double pushout approa
h. Te
hni
al ReportTR-96-17, Dipartimento di Informati
a, Mar
h 21 1996.[Cou90℄ Bruno Cour
elle. Graph rewriting: An algebrai
 and logi
 approa
h. In Handbook of Theoreti
alComputer S
ien
e, Volume B: Formal Models and Semati
s (B), pages 193{242. Elsevier, 1990.[dB72℄ N. G. de Bruijn. Lambda
al
ulus notation with nameless dummies, a tool for automati
 formulamanipulation. Indag. Math., 34:381{392, 1972.[EHK+97℄ Hartmut Ehrig, Reiko He
kel, Martin Kor�, Mi
hael L�owe, Leila Ribeiro, Annika Wagner,and Andrea Corradini. Algebrai
 approa
hes to graph transformation - part II: Singlepushout approa
h and
omparison with double pushout approa
h. In Grzegorz Rozenberg,editor, Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1:Foundations, pages 247{312. World S
ienti�
, 1997.[FM97℄ P. Fradet and D. Le M�etayer. Shape types. In Pro
. of Prin
iples of Programming Languages,Paris, Fran
e, Jan. 1997. ACM Press.[GM05℄ Lilia Georgieva and Patri
k Maier. Des
ription logi
s for shape analysis. In Bernhard K.Ai
hernig and Bernhard Be
kert, editors, Third IEEE International Conferen
e on SoftwareEngineering and Formal Methods (SEFM 2005), pages 321{330, Koblenz, Germany, September2005. IEEE Computer So
iety, IEEE.[KS93℄ Nils Klarlund and Mi
hael I. S
hwartzba
h. Graph types. In POPL, pages 196{205, 1993.[KS06℄ A. K�onigs and A. S
h�urr. Tool Integration with Triple Graph Grammars - A Survey. InR. He
kel, editor, Pro
eedings of the SegraVis S
hool on Foundations of Visual ModellingTe
hniques, volume 148 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e, pages 113{150,Amsterdam, 2006. Elsevier S
ien
e Publ.[MFV+05℄ Pierre-Alain Muller, Fran
k Fleurey, Didier Vojtisek, Zo�e Drey, Damien Pollet, Fr�ed�eri
Fondement, Philippe Studer, and Jean-Mar
 J�ez�equel. On exe
utable meta-languages appliedto model transformations. In Pro
. Model Transformations In Pra
ti
e Workshop, 2005.[NPW02℄ Tobias Nipkow, Lawren
e Paulson, and Markus Wenzel. Isabelle/HOL. A Proof Assistant forHigher-Order Logi
. LNCS 2283. Springer Verlag, 2002.[Plu99℄ Detlef Plump. Handbook of Graph Grammars and Computing by Graph Transformation, volume2: Appli
ations, Languages and Tools,
hapter Term Graph Rewriting. World S
ienti�
, 1999.[RD06℄ Arend Rensink and Dino Distefano. Abstra
t graph transformation. Ele
tr. Notes Theor.Comput. S
i, 157(1):39{59, 2006.[Ren03℄ Arend Rensink. Towards model
he
king graph grammars. In Pro
. Workshop on AutomatedVeri�
ation of Criti
al Systems (AVoCS), 2003.[SG06℄ Martin Stre
ker and Mathieu Giorgino. Towards a formalisation of graph transformations inproof assistants. In Pro
. AVOCS'06, September 2006.[Tae03℄ Gabriele Taentzer. AGG: A graph transformation environment for system modeling andvalidation. In Pro
. Tool Exihibition at Formal Methods 2003, September 2003.[Var04℄ D�aniel Varr�o. Automated formal veri�
ation of visual modeling languages by model
he
king.Software and System Modeling, 3(2):85{113, 2004.[YRS+06℄ Greta Yorsh, Alexander Moshe Rabinovi
h, Mooly Sagiv, Antoine Meyer, and Ahmed Bouajjani.A logi
 of rea
hable patterns in linked data-stru
tures. In Lu
a A
eto and Anna Ing�olfsd�ottir,editors, FoSSaCS, volume 3921 of Le
ture Notes in Computer S
ien
e, pages 94{110. Springer,2006. 124

