

# Greedily Decomposing Proof Terms for String Rewriting into Multistep Derivations by Topological Multisorting

Vincent van Oostrom<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.



### **Example (Running)**

string rewrite system (SRS)  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

ABAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $ABAAB \rightarrow ABBAAB$ 

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $ABAAB \rightarrow ABBAAB \rightarrow AAAAB$ 

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

ABAAB 
ightarrow ABBAAB 
ightarrow AAAAB 
ightarrow AABAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

ABAAB 
ightarrow ABBAAB 
ightarrow AAAAB 
ightarrow AABAAB 
ightarrow BAABAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

ABAAB 
ightarrow ABBAAB 
ightarrow AAAAB 
ightarrow AABAAB 
ightarrow BAABAAB 
ightarrow BBAABAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $\mathsf{ABAAB} o \mathsf{ABBAAB} o \mathsf{AAAAB} o \mathsf{AABAAB} o \mathsf{BAABAAB} o \mathsf{BBAABAAB} o \mathsf{AAABAAB}$ 



Termgraph 2022, Haifa; Monday 1-8-2022

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

ABAAB o ABBAAB o AAAAB o AABAAB o BAABAAB o BBAABAAB o AAABAAB o ABAABAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 ${\sf ABAAB} o {\sf ABBAAB} o {\sf AAAAB} o {\sf AABAAB} o {\sf BAABAAB} o {\sf BBAABAAB} o {\sf AAABAAB} o {\sf ABAABAAB}$ 

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $\textit{AB}\underline{\textit{AAB}} \rightarrow \textit{A}\underline{\textit{BB}}\textit{AAB} \rightarrow \textit{AA}\underline{\textit{AAB}} \rightarrow \underline{\textit{AAB}}\textit{AAB} \rightarrow \textit{B}\underline{\textit{AAB}}\textit{AAB} \rightarrow \underline{\textit{BB}}\textit{AAB}\textit{AAB} \rightarrow \textit{AAAB}\textit{AAB} \rightarrow \textit{ABAABAAB}$ 

reduction ABAAB --> ABAABAAB

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 ${\sf ABAAB} o {\sf ABBAAB} o {\sf AAAAB} o {\sf AABAAB} o {\sf BAABAAB} o {\sf BBAABAAB} o {\sf AAABAAB} o {\sf ABAABAAB}$ 

reduction ABAAB -- ABAABAAB

observe 2<sup>nd</sup>-3<sup>rd</sup> steps causally independent, and 6<sup>th</sup>-7<sup>th</sup> steps too

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}AAB o AA\underline{AAB} o \underline{AAB}AAB o B\underline{AAB}AAB o \underline{BB}AABAAB o A\underline{AAB}AAB o ABAABAAB$ 

reduction ABAAB -- ABAABAAB

ABAAB



### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $\mathsf{AB} \underline{\mathsf{AAB}} \to \mathsf{A} \underline{\mathsf{BB}} \mathsf{AAB} \to \mathsf{AA} \underline{\mathsf{AAB}} \to \underline{\mathsf{AAB}} \mathsf{AAB} \to \mathsf{B} \underline{\mathsf{BAB}} \mathsf{AAB} \to \underline{\mathsf{BB}} \mathsf{AABAAB} \to \mathsf{AA} \underline{\mathsf{AAB}} \mathsf{AAB} \to \mathsf{ABAABAAB}$ 

reduction ABAAB -- ABAABAAB

 $ABAAB \rightarrow ABBAAB$ 

### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

eta : AAB ightarrow BAAB

 $\mathsf{AB} \underline{\mathsf{AAB}} \to \mathsf{ABB} \underline{\mathsf{AAB}} \to \mathsf{AA} \underline{\mathsf{AAB}} \to \underline{\mathsf{AAB}} \mathsf{AAB} \to \mathsf{BAB} \underline{\mathsf{AAB}} \to \underline{\mathsf{BB}} \underline{\mathsf{AABAAB}} \to \mathsf{AAAB} \underline{\mathsf{AAB}} \to \mathsf{ABAABAAB}$ 

reduction ABAAB -- ABAABAAB

 $ABAAB \rightarrow ABBAAB \longrightarrow AABAAB$ 



### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

eta : AAB ightarrow BAAB

 $\mathsf{AB} \underline{\mathsf{AAB}} \to \mathsf{ABB} \underline{\mathsf{AAB}} \to \mathsf{AA} \underline{\mathsf{AAB}} \to \underline{\mathsf{AAB}} \mathsf{AAB} \to \mathsf{BAB} \underline{\mathsf{AAB}} \to \underline{\mathsf{BB}} \underline{\mathsf{AABAAB}} \to \mathsf{AAAB} \underline{\mathsf{AAB}} \to \mathsf{ABAABAAB}$ 

reduction ABAAB -- ABAABAAB

ABAAB 
ightarrow ABBAAB 
ightarrow AABAAB 
ightarrow BAABAAB



#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $\mathsf{AB} \underline{\mathsf{AAB}} \to \mathsf{A} \underline{\mathsf{BB}} \mathsf{AAB} \to \mathsf{AA} \underline{\mathsf{AAB}} \to \underline{\mathsf{AAB}} \mathsf{AAB} \to \mathsf{B} \underline{\mathsf{BAB}} \mathsf{AAB} \to \underline{\mathsf{BB}} \mathsf{AABAAB} \to \mathsf{AA} \underline{\mathsf{AAB}} \mathsf{AAB} \to \mathsf{ABAABAAB}$ 

reduction ABAAB -- ABAABAAB

ABAAB o ABBAAB o AABAAB o BAABAAB o BBAABAAB

#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}AAB o AA\underline{AAB} o \underline{AAB}AAB o B\underline{AAB}AAB o B\underline{BB}AABAAB o A\underline{AAB}AAB o ABAABAAB$ 

reduction ABAAB -- ABAABAAB

 $extit{ABAAB} 
ightarrow extit{ABBAAB} 
ightarrow extit{AABAAB} 
ightarrow extit{BBAABAAB} 
ightarrow extit{ABAABAAB} 
ightarrow extit{ABAABAAB}$ 

#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}\underline{AAB} o AA\underline{AAB} o A\underline{AB}\underline{AAB} o B\underline{AAB}\underline{AAB} o B\underline{BAAB}\underline{AAB} o A\underline{AAB}\underline{AAB} o AB\underline{AAB}\underline{AAB}$ 

reduction ABAAB -- ABAABAAB

 $AB\underline{AAB} o A\underline{BB}\underline{AAB} o AAB\underline{AAB} o B\underline{AAB}\underline{AAB} o B\underline{BB}\underline{AAB}\underline{AAB} o ABAABAAB$ 

#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}AAB o AA\underline{AAB} o \underline{AAB}AAB o B\underline{AAB}AAB o B\underline{BB}AABAAB o A\underline{AAB}AAB o ABAABAAB$ 

reduction ABAAB -- ABAABAAB

 $AB\underline{AAB} \xrightarrow{} A\underline{BBAAB} \xrightarrow{} A\underline{ABAAB} \xrightarrow{} B\underline{AAB}AAB \xrightarrow{} B\underline{BBAAB}AAB \xrightarrow{} ABAABAAB$ 

#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}\underline{AAB} o AA\underline{AAB} o A\underline{AB}\underline{AAB} o B\underline{AAB}\underline{AAB} o B\underline{BAAB}\underline{AAB} o A\underline{AAB}\underline{AAB} o AB\underline{AAB}\underline{AAB}$ 

reduction ABAAB -- ABAABAAB

 $ABAAB \xrightarrow{} ABBAAB \xrightarrow{} AABAAB \xrightarrow{} BAABAAB \xrightarrow{} BBAABAAB \xrightarrow{} ABAABAAB$ 

multistep reduction ABAAB ---> ABAABAAB



#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}AAB o AA\underline{AAB} o \underline{AAB}AAB o B\underline{AAB}AAB o \underline{BB}AABAAB o A\underline{AAB}AAB o ABAABAAB$ 

reduction ABAAB -- ABAABAAB

 $AB\underline{AAB} \dashrightarrow A\underline{BB}\underline{AAB} \dashrightarrow \underline{AAB}\underline{AAB} \longrightarrow B\underline{AAB}\underline{AAB} \longrightarrow B\underline{BB}\underline{AAB}\underline{AAB} \longrightarrow ABA\underline{AB}\underline{AAB}$ 

multistep reduction ABAAB → → ABAABAAB

observe both reductions do same amount of work: causally equivalent



#### **Example (Running)**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 $AB\underline{AAB} o A\underline{BB}AAB o AA\underline{AAB} o \underline{AAB}AAB o B\underline{AAB}AAB o B\underline{BB}AABAAB o A\underline{AAB}AAB o ABAABAAB$ 

reduction ABAAB -- ABAABAAB

 $AB\underline{AAB} \dashrightarrow A\underline{BB}\underline{AAB} \dashrightarrow \underline{AAB}\underline{AAB} \longrightarrow B\underline{AAB}\underline{AAB} \longrightarrow B\underline{BB}\underline{AAB}\underline{AAB} \longrightarrow ABA\underline{AB}\underline{AAB}$ 

multistep reduction ABAAB --->> ABAABAAB

this talk: 2<sup>nd</sup> is unique greedy multistep reduction causally equivalent to 1<sup>st</sup>

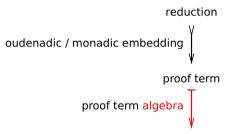


reduction in string rewrite system (Thue 1914)

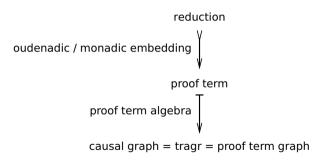
reduction

oudenadic / monadic embedding

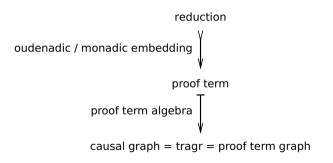
proof term over signature, rule symbols, composition, and src / tgt (Meseguer 1990, Terese № 2003)



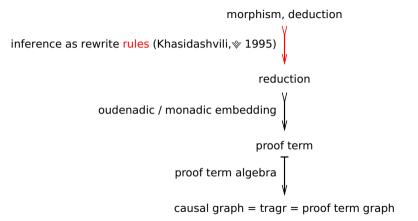
causal graph (Wolfram 2002); trace relation / graph (Terese \* 2003 / here)



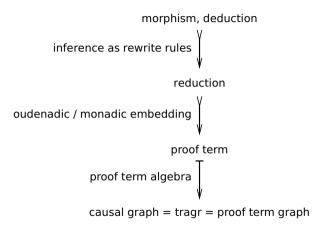
composition of embedding and algebra maps induces equivalence on reductions



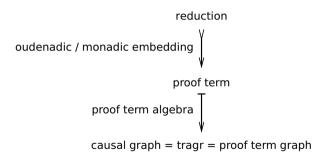
composition of maps induces equivalence on reductions (via graph isomorphism)



composition induces equivalence on morphisms, deductions (Guglielmi; paper)



composition induces equivalence on morphisms, deductions



this talk: composition of maps induces equivalence on reductions

# Embedding reductions into proof terms $(\rightarrowtail)$

#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

### Embedding reductions into proof terms

### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

 ${\sf ABAAB} o {\sf ABBAAB} o {\sf AAAAB} o {\sf AABAAB} o {\sf BAABAAB} o {\sf BBAABAAB} o {\sf AAABAAB} o {\sf ABAABAAB}$ 

# Embedding reductions into proof terms

### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

$$\alpha$$
 : **BB**  $\rightarrow$  **A**

$$\beta$$
 : AAB  $\rightarrow$  BAAB

$$AB\underline{AAB} o A\underline{BB}AAB o AA\underline{AAB} o \underline{AAB}AAB o B\underline{AAB}AAB o \underline{BB}AABAAB o A\underline{AAB}AAB o ABAABAAB$$

$${\it AB}{\it \beta} \cdot {\it A}{\it \alpha}{\it AAB} \cdot {\it AA}{\it \beta} \cdot {\it \beta}{\it AAB} \cdot {\it B}{\it \beta}{\it AAB} \cdot {\it \alpha}{\it AABAAB} \cdot {\it A}{\it \beta}{\it AAB}$$

replace redex-patterns by rule symbols  $\alpha, \beta$  and arrows by composition symbol  $\cdot$ 

### Embedding reductions into proof terms

#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

$$\textbf{AB}\underline{\textbf{AAB}} \rightarrow \textbf{A}\underline{\textbf{BB}} \textbf{AAB} \rightarrow \textbf{AA}\underline{\textbf{AAB}} \rightarrow \underline{\textbf{AAB}} \textbf{AAB} \rightarrow \textbf{B}\underline{\textbf{AAB}} \textbf{AAB} \rightarrow \underline{\textbf{BB}} \textbf{AAB} \textbf{AAB} \rightarrow \textbf{A}\underline{\textbf{AAB}} \textbf{AAB} \rightarrow \textbf{ABAABAAB} \rightarrow \underline{\textbf{AAB}} \textbf{AAB} \rightarrow \textbf{ABAABAAB} \rightarrow \underline{\textbf{AAB}} \textbf{AAB} \rightarrow \underline{\textbf{AAB$$

 $ABeta\cdot Alpha AAB\cdot AAeta\cdot eta AAB\cdot Beta AAB\cdot lpha AABAAB\cdot Aeta AAB$ 

 $AB\underline{AAB} \xrightarrow{} \xrightarrow{} A\underline{BB}\underline{AAB} \xrightarrow{} \xrightarrow{} A\underline{AB}\underline{AAB} \xrightarrow{} \xrightarrow{} B\underline{BAAB}\underline{AAB} \xrightarrow{} \xrightarrow{} AB\underline{AAB}\underline{AAB}$ 

#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

$$\alpha$$
 : **BB**  $\rightarrow$  **A**

$$\beta$$
 : AAB  $\rightarrow$  BAAB

$$AB\underline{AAB} \to ABBAAB \to AA\underline{AAB} \to \underline{AABAAB} \to \underline{BAABAAB} \to \underline{BBAABAAB} \to \underline{AAABAAB} \to ABAABAAB$$
 
$$\downarrow \\ AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot \underline{B}\beta AAB \cdot \alpha AABAAB \cdot \underline{A}\beta AAB$$
 
$$AB\underline{AAB} \to \underline{ABBAAB} \to \underline{AABAAB} \to \underline{BBAABAAB} \to \underline{BBAABAAB} \to \underline{ABAABAAB}$$
 
$$\downarrow \\ AB\beta \cdot \underline{A}\alpha\beta \cdot \beta AAB \cdot \underline{B}\beta \underline{AAB} \cdot \alpha \beta \underline{AAB}$$

multisteps may have multiple rule symbols; concurrent / parallel contraction



#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

- $\bullet \ \ \gamma := \mathsf{A} \mathsf{B} \beta \cdot \mathsf{A} \alpha \mathsf{A} \mathsf{A} \mathsf{B} \cdot \mathsf{A} \mathsf{A} \beta \cdot \beta \mathsf{A} \mathsf{A} \mathsf{B} \cdot \mathsf{B} \beta \mathsf{A} \mathsf{A} \mathsf{B} \cdot \alpha \mathsf{A} \mathsf{A} \mathsf{B} \mathsf{A} \mathsf{A} \mathsf{B} \cdot \mathsf{A} \beta \mathsf{A} \mathsf{A} \mathsf{B}$
- $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$

#### Example

string rewrite system  $(\Sigma, P)$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$ : **BB**  $\rightarrow$  **A**  $\beta$  : AAB  $\rightarrow$  BAAB

- $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$
- $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$

#### **Definition (multistep and proof term)**

multistep term over signature extended with rule symbols proof term idem but also extended with composition respecting src and tgt for rule  $\rho: \ell \to r$ ,  $src(\rho) := \ell$  and  $tgt(\rho) := r$ ; homomorphically extended

#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  :  $BB \rightarrow A$  $\beta$  :  $AAB \rightarrow BAAB$ 

- $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$
- $\operatorname{src}(\gamma) := \operatorname{src}(AB\beta) := AB\operatorname{src}(\beta) := ABAAB$

#### **Definition (multistep and proof term)**

multistep term over signature extended with rule symbols proof term idem but also extended with composition  $\cdot$  respecting src and tgt for rule  $\rho: \ell \to r$ ,  $\mathrm{src}(\rho) := \ell$  and  $\mathrm{tgt}(\rho) := r$ ; homomorphically extended

#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

lpha :  $BB \rightarrow A$ eta :  $AAB \rightarrow BAAB$ 

- $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$
- $src(\gamma) := src(AB\beta) := ABAAB$  and  $tgt(\gamma) := tgt(A\beta AAB) := ABAABAAB$

#### **Definition (multistep and proof term)**

multistep term over signature extended with rule symbols proof term idem but also extended with composition  $\cdot$  respecting src and tgt for rule  $\rho: \ell \to r$ ,  $\operatorname{src}(\rho) := \ell$  and  $\operatorname{tgt}(\rho) := r$ ; homomorphically extended



#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$ : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

- $\gamma$  : ABAAB  $\geqslant$  ABAABAAB, target string P-reachable from source string
- $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$

#### **Definition (multistep and proof term)**

multistep term over signature extended with rule symbols proof term idem but also extended with composition  $\cdot$  respecting src and tgt for rule  $\rho: \ell \to r$ ,  $\mathrm{src}(\rho) := \ell$  and  $\mathrm{tgt}(\rho) := r$ ; homomorphically extended



#### **Example**

string rewrite system  $\langle \Sigma, P \rangle$ ; alphabet  $\Sigma = \{A, B\}$  with letters A, B; rules P:

 $\alpha$  : **BB**  $\rightarrow$  **A** 

 $\beta$  : AAB  $\rightarrow$  BAAB

- $\gamma$  : ABAAB  $\geqslant$  ABAABAAB
- $\gamma'$ : ABAAB  $\geqslant$  ABAABAAB

#### **Definition (multistep and proof term)**

multistep term over signature extended with rule symbols proof term idem but also extended with composition  $\cdot$  respecting src and tgt for rule  $\rho: \ell \to r$ ,  $\operatorname{src}(\rho) := \ell$  and  $\operatorname{tgt}(\rho) := r$ ; homomorphically extended

#### Lemma (multistep reductions as proof terms)

• is injective (obvious);

#### Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps

#### Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps

#### Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps
- unique modulo associativity of composition ·

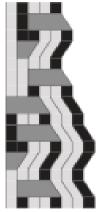
#### Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps
- unique modulo associativity of composition ·

#### **Upshot**

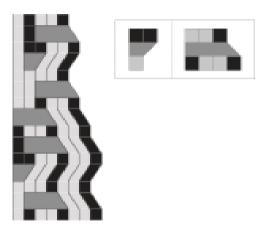
harmless to speak of (multistep) reductions to refer to the corresponding proof term modulo associativity

### **Evolution**: visualisation of reduction $\gamma$ (Wolfram 2002)





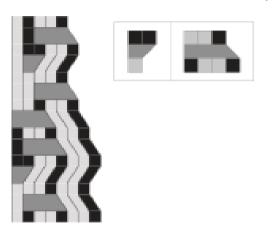
# Evolution: visualisation of proof term $\gamma$





 $A \mapsto \Box$ ,  $B \mapsto \blacksquare$ ,  $\alpha \mapsto \blacksquare$ , and  $\beta \mapsto \blacksquare$ ; traces show causality (Terese  $\$  2003)

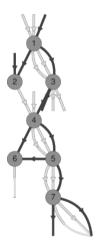
### Evolution: visualisation of proof terms





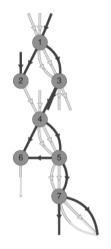
 $A \mapsto \Box$ ,  $B \mapsto \blacksquare$ ,  $\alpha \mapsto \blacksquare$ , and  $\beta \mapsto \blacksquare$ ; traces show causality (Terese 2003)

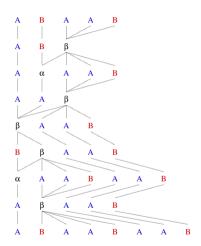
# Causal graph of reduction $\gamma$ (Wolfram 2002)



causal graph: rules as nodes with src and tgt symbols as edges

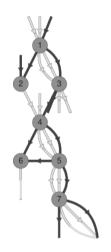
### Trace relation of proof term $\gamma$ (Terese $\psi$ 2003)

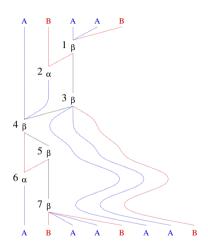




trace relation: rule and symbol positions with tracing as relation

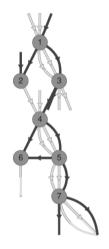
### Trace relation of proof term $\gamma$

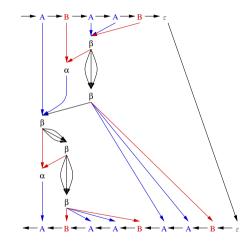




trace relation: rule positions with tracing as relation

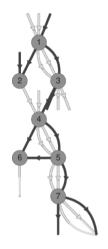
# Trace graph of proof term $\gamma$

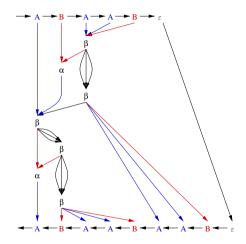




trace graph: rule positions with tracing as graph

# Tragr of proof terms $\gamma$ and $\gamma'$

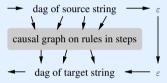




tragr: rule positions with tracing as graph

#### Definition (tragr: symbol- and rule-labelled planar dag)

directed acyclic multigraph



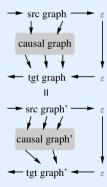
#### **Definition (tragr: symbol- and rule-labelled planar dag)**

having source and target dags as interface

```
\begin{array}{c} \bullet \quad \text{dag of source string} \\ \text{causal graph on rules in steps} \\ \hline \bullet \quad \text{dag of target string} \\ \hline \end{array}
```

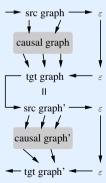
#### **Definition (tragr proof term algebra** [])

• composition  $\gamma \cdot \gamma' \mapsto \text{vertical}$  (serial) composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$ 



#### **Definition (tragr proof term algebra** [])

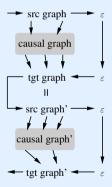
 $\bullet \ \ \text{composition} \ \gamma \cdot \gamma' \mapsto \text{vertical composition of graphs} \ [\![\gamma]\!] \ \ \text{and} \ [\![\gamma']\!]$ 

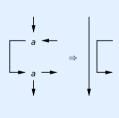




#### **Definition (tragr proof term algebra** [])

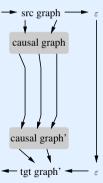
• composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$  + elision



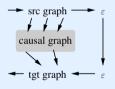


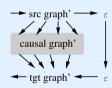
#### **Definition (tragr proof term algebra** [])

• composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$ 

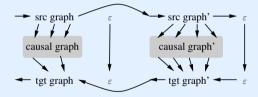


- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto \text{horizontal}$  (parallel) composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$

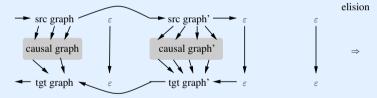




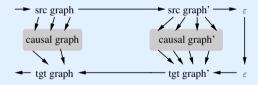
- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$



- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$  + elision



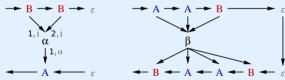
- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$



- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- symbol a and empty string  $\mapsto$  identity graph with 'itself' as source, target



- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- ullet symbol  $\mapsto$  identity graph
- ullet rule  $\mapsto$  trace graph from dag of source string to dag of target string



#### **Definition (tragr proof term algebra** []])

- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- ullet symbol  $\mapsto$  identity graph
- rule  $\mapsto$  trace graph

this tragr algebra [ ] induces causal equivalence on proof terms

### **Definition (tragr proof term algebra** []])

- $\bullet$  composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- ullet symbol  $\mapsto$  identity graph
- rule  $\mapsto$  trace graph

this tragr algebra  $[\![\,]\!]$  induces causal equivalence on proof terms,  $[\![\gamma]\!] = [\![\gamma']\!]$ 



### **Definition (tragr proof term algebra** []])

- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- ullet symbol  $\mapsto$  identity graph
- rule  $\mapsto$  trace graph

#### **Definition (permutation equivalence** $\equiv$ (Lévy, Stark,...))

$$\begin{array}{ll} \text{(left unit)} & s \cdot \gamma \equiv \gamma \\ \text{(right unit)} & \gamma \cdot t \equiv \gamma \end{array} \qquad \begin{array}{ll} \text{(associativity)} & (\gamma \cdot \delta) \cdot \zeta \equiv \gamma \cdot (\delta \cdot \zeta) \\ \text{(exchange)} & \gamma \delta \cdot \zeta \eta \equiv (\gamma \cdot \zeta) (\delta \cdot \eta) \end{array}$$

strings of (non-rule) symbols as vertical unit

### **Definition (tragr proof term algebra** []])

- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- ullet symbol  $\mapsto$  identity graph
- rule  $\mapsto$  trace graph

#### **Definition (permutation equivalence** $\equiv$ )

```
\begin{array}{ll} \text{(left unit)} & \varepsilon\gamma\equiv\gamma & \text{(associativity)} & (\gamma\delta)\zeta\equiv\gamma(\delta\zeta) \\ \text{(right unit)} & \gamma\varepsilon\equiv\gamma & \text{(exchange)} & \gamma\delta\cdot\zeta\eta\equiv(\gamma\cdot\zeta)(\delta\cdot\eta) \end{array}
```

empty string  $\varepsilon$  as horizontal unit



# Tragrs by proof term algebra

### **Definition (tragr proof term algebra** []])

- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- symbol  $\mapsto$  identity graph
- rule  $\mapsto$  trace graph

### **Definition (permutation equivalence** $\equiv$ )

```
\begin{array}{ll} \text{(left unit)} & \varepsilon\gamma\equiv\gamma & \text{(associativity)} & (\gamma\delta)\zeta\equiv\gamma(\delta\zeta) \\ \text{(right unit)} & \gamma\varepsilon\equiv\gamma & \text{(exchange)} & \gamma\delta\cdot\zeta\eta\equiv(\gamma\cdot\zeta)(\delta\cdot\eta) \end{array}
```

### Lemma (permutation)

permutation equivalence induces causal equivalence: if  $\gamma \equiv \delta$  then  $[\![\gamma]\!] = [\![\delta]\!]$ 



Termgraph 2022, Haifa; Monday 1-8-2022

# Tragrs by proof term algebra

### **Definition (tragr proof term algebra** []])

- composition  $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!]$  and  $[\![\gamma']\!]$
- juxtaposition  $\gamma\gamma'\mapsto$  horizontal composition of graphs  $[\![\gamma]\!]$  and  $[\![\gamma']\!]$
- symbol  $\mapsto$  identity graph
- rule  $\mapsto$  trace graph

### **Definition (permutation equivalence** $\equiv$ )

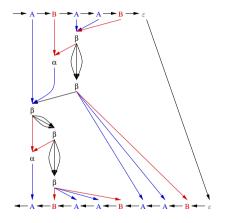
```
\begin{array}{ll} \text{(left unit)} & \varepsilon\gamma\equiv\gamma & \text{(associativity)} & (\gamma\delta)\zeta\equiv\gamma(\delta\zeta) \\ \text{(right unit)} & \gamma\varepsilon\equiv\gamma & \text{(exchange)} & \gamma\delta\cdot\zeta\eta\equiv(\gamma\cdot\zeta)(\delta\cdot\eta) \end{array}
```

### Lemma (permutation)

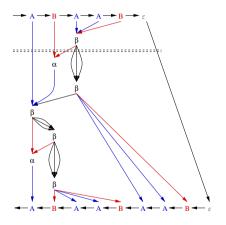
permutation equivalence induces causal equivalence; conversely?



Termgraph 2022, Haifa: Monday 1-8-2022

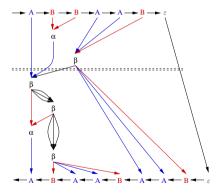


idea: by topological multisorting; maximal rule-parallelism

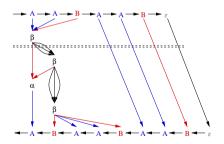


 $AB\beta \cdot \ldots$ ; later steps caused by this  $\beta$ 



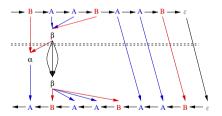


 $AB\beta \cdot A\alpha\beta \cdot ...$ ;  $\alpha$  and  $\beta$  independent; later steps caused by (one of) them



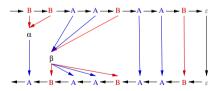
 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot \dots$ ; later steps caused by this  $\beta$ 





 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \dots$ ; later steps caused by this  $\beta$ 





 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB \cdot ...; \alpha$  and  $\beta$  independent; no later steps

 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$ 



 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB = \gamma'!$ 



### **Definition (cf. greedy decomposition of Dehornoy et al. 2015)**

• proof term greedy if multistep reduction without loath pairs

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$   $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$  is not greedy

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$   $\gamma := AB\beta \cdot \overline{A}\alpha \underline{AAB} \cdot AA\underline{\beta} \cdot \beta AAB \cdot B\beta AAB \cdot \overline{\alpha}\underline{AAB}AAB \cdot A\underline{\beta}AAB$  loath pairs

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$   $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$  is greedy; no loath pairs

#### **Definition (cf. being sorted / standard if no out-of-order pairs)**

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$

### Theorem (bijection)

bijection between greedy proof terms and tragrs (tragr algebra, topological sort)

### Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$

### Theorem (bijection)

bijection between greedy proof terms and tragrs

#### Proof.

topological sort of tragr gives greedy multistep reduction: by induction using that for multistep constructed from first layer, all later steps are (transitively) caused by some rule in that layer / multistep by sorting topologically



#### **Definition (cf. being sorted / standard if no out-of-order pairs)**

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$

### Theorem (bijection)

bijection between greedy proof terms and tragrs

#### Proof.

identity if tragr obtained from greedy proof term by tragr algebra: by induction showing that for a greedy proof term its multisteps induce the layers of the topological sort when read back, since consecutive multisteps are not loath

#### **Definition (cf. being sorted / standard if no out-of-order pairs)**

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$

### Theorem (bijection)

bijection between greedy proof terms and tragrs

### **Example**

reading back from the tragr of  $\gamma'$  yields  $\gamma'$  again, since it is greedy; not for  $\gamma$ 

### **Definition (swapping loath pairs)**

• consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  not caused by rule in  $\Phi$ 

### **Definition (swapping loath pairs)**

• consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$ 

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$ ; intuition: increase parallelism in 1st multistep

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

### **Example**

•  $\mathbf{A} \alpha \underline{\mathbf{A}} \underline{\mathbf{A}} \mathbf{B} \cdot \mathbf{A} \mathbf{A} \beta$  swaps into  $\mathbf{A} \alpha \beta \cdot \mathbf{A} \underline{\mathbf{A}} \underline{\mathbf{B}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{B}}$ 

inverse of 1st multistep and step in 2nd multistep orthogonal

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

#### **Example**

- $\mathbf{A}\alpha \mathbf{\underline{AAB}} \cdot \mathbf{AA}\beta$  swaps into  $\mathbf{A}\alpha\beta \cdot \mathbf{AA}\mathbf{\underline{BAAB}}$
- $\alpha \underline{AAB}\underline{AAB} \cdot \underline{A}\beta \underline{AAB}$  swaps into  $\alpha \beta \underline{AAB} \cdot \underline{ABAAB}\underline{AAB}$

inverse of 1st multistep and step in 2nd multistep orthogonal

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

#### **Example**

- $A\alpha AAB \cdot AA\beta$  swaps into  $A\alpha\beta \cdot AABAAB$
- $\alpha$ <u>AAB</u>AAB · A $\beta$ AAB swaps into  $\alpha\beta$ AAB · A<u>BAAB</u>AAB
- $\gamma$  greedily decomposes into  $\gamma' \cdot ABAABAAB \cdot ABAABAAB$

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping + removing empty multisteps

### **Example**

- $A\alpha \underline{AAB} \cdot AA\beta$  swaps into  $A\alpha\beta \cdot AA\underline{BAAB}$
- $\alpha$ **AABAAB** · **A\betaAAB** swaps into  $\alpha\beta$ **AAB** · **A\betaAAB**
- $\gamma$  greedily decomposes into  $\gamma'$

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

### Theorem (greedy decomposition)

greedy decomposition  $\gamma'$  of  $\gamma$  exists (swapping terminates) and  $\gamma \equiv \gamma'$ 

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

### Theorem (greedy decomposition)

greedy decomposition  $\gamma'$  of  $\gamma$  exists and is permutation equivalent to  $\gamma$ :  $\gamma \equiv \gamma'$ 

### **Definition (swapping loath pairs)**

- consecutive multisteps  $\Phi \cdot \Psi$  loath if some rule in  $\Psi$  can be swapped into  $\Phi$ :  $\exists X$  such that  $\Phi \subseteq X$  having residual step  $\psi := X/\Phi$  with  $\psi \subseteq \Psi$
- result of swap is  $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

### Theorem (greedy decomposition)

greedy decomposition  $\gamma'$  of  $\gamma$  exists and is permutation equivalent to  $\gamma$ :  $\gamma \equiv \gamma'$ 

#### Proof.

termination : inverse lexicographic size (Huet & Lévy) of multisteps decreases equivalence : loath pair equivalent to result of swap ( $\Phi \cdot \Psi \equiv X \cdot (\Psi/\psi)$ )



### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

### Lemma (confluence-by-evaluation (Plaisted 1985 / Hardin 1989))

rewrite system ightarrow is confluent, if  $\inf$  function on the objects and

- $oldsymbol{0} o$  is normalising (WN)
- 2 if  $a \rightarrow b$  then nf(a) = nf(b)

### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

### Lemma (CbE)

rewrite system  $\rightarrow$  is confluent, if nf function on the objects and

- $oldsymbol{0} o$  is normalising
- 2 if  $a \rightarrow b$  then nf(a) = nf(b)

#### Proof.

if  $b \leftarrow a \rightarrow c$ 

### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

### Lemma (CbE)

 $rewrite\ system 
ightarrow is\ confluent,\ if\ nf\ function\ on\ the\ objects\ and$ 

- $oldsymbol{1} o$  is normalising
- 2 if  $a \rightarrow b$  then nf(a) = nf(b)

#### Proof.

then  $b' \leftarrow b \leftarrow a \rightarrow c \rightarrow c'$  for normal forms b', c' by (1)



### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Lemma (CbE)

rewrite system  $\rightarrow$  is confluent, if nf function on the objects and

- $oldsymbol{0} o$  is normalising
- 2 if  $a \rightarrow b$  then nf(a) = nf(b)

#### Proof.

hence nf(b') = nf(c') by convertibility of b' and c' and (2)



### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Lemma (CbE)

rewrite system  $\rightarrow$  is confluent, if nf function on the objects and

- $oldsymbol{1} o$  is normalising
- 2 if  $a \rightarrow b$  then nf(a) = nf(b)

#### Proof.

so 
$$b' = c'$$
 by (3), i.e.  $b \rightarrow b' = c' \leftarrow c$ 



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to [ ] followed by read back TS:



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to  $[\![\,]\!]$  followed by read back TS:

 swapping is terminating (by greedy decomposition theorem), hence normalising



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to  $[\![\,]\!]$  followed by read back TS:

- swapping is terminating, hence normalising
- 2 nf is preserved by swapping since [ ] is by permutation lemma using: proof term  $\equiv$  multistep reduction (serialisation)



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to  $[\![\,]\!]$  followed by read back TS:

- swapping is terminating, hence normalising
- 2 nf is preserved by swapping since [ ] is by permutation lemma using: proof term  $\equiv$  greedy multistep reduction (greedy decomposition theorem)



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to  $[\![\,]\!]$  followed by read back TS:

- swapping is terminating, hence normalising
- 2 nf is preserved by swapping since [] is
- 3 nf is identity on greedy normal forms



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to  $[\![\,]\!]$  followed by read back TS:

- swapping is terminating, hence normalising
- $oldsymbol{2}$  nf is preserved by swapping since  $[\![\,]\!]$  is
- 3 nf is identity on greedy normal forms

by CbE swapping is complete (confluent and terminating)



#### Theorem (permutation equivalence via causal equivalence)

 $\forall$  proof terms  $\gamma$ ,  $\exists$ ! greedy multistep reduction  $\gamma'$  such that  $\gamma \equiv \gamma'$ 

#### Proof.

for swap rewrite system and nf mapping to  $[\![\,]\!]$  followed by read back TS:

- swapping is terminating, hence normalising
- $oldsymbol{2}$  nf is preserved by swapping since  $[\![\,]\!]$  is
- 3 nf is identity on greedy normal forms

by CbE swapping is complete (confluent and terminating)

#### **Upshot**

permutation  $\simeq$  causal equivalence; greedy multistep reduction  $\simeq$  causal graph



physics (causal graph; Wolfram)

physics, Garside theory (greedy decomposition; Dehornoy)

physics, Garside theory and concurrency theory (CTS; Stark)

physics, Garside theory and concurrency theory mirror rewriting (≡; Lévy)

• physics, Garside theory and concurrency theory mirror rewriting: causality

- physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic (myopic; intentional?)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- 2 cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS (nullary, modulo AC)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding (unary)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding
- **4 empty** causation? ( $abc \rightarrow ac \rightarrow d$ ? for rules  $b \rightarrow \varepsilon$ ,  $ac \rightarrow d$ ; see paper)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- **⑤** complexity? (area? width (parallel) vs. length (serial))

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- complexity?
- 6 extend to term rewriting? cf. sharing graphs (Lamping 1990) TRS non-linear: replication vs. causation (Terese ♥2003)



- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- complexity?
- 6 extend to term rewriting?
- $\bigcirc$  application / automation of CbE? (ground confluence of 0, S, A; Futatsugi)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 8 morphism

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- ® morphism, deduction

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- morphism, deduction 
   proof term

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 8 morphism, deduction → proof term modulo causality

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- $oxed{3}$  morphism, deduction  $\rightarrowtail$  proof term modulo causality  $\leftrightarrow$  causal graph

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- 3 oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- $oxed{3}$  morphism, deduction  $\rightarrowtail$  proof term modulo causality  $\leftrightarrow$  tragr

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- $oxed{3}$  morphism, deduction  $\rightarrowtail$  proof term modulo causality  $\leftrightarrow$  proof term graph

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- @ empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- $oldsymbol{3}$  morphism, deduction  $\rightarrowtail$  proof term modulo causality  $\leftrightarrow$  proof term graph thank you

(return to NL tomorrow night; contact me after at oostrom@javakade.nl)